留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无焊缝连接金属内衬复合材料压力容器的制备工艺及其液压实验

顾付伟 顾周越 朱晓磊 陆晓峰 方岱宁 李鲤

顾付伟, 顾周越, 朱晓磊, 等. 一种无焊缝连接金属内衬复合材料压力容器的制备工艺及其液压实验[J]. 复合材料学报, 2021, 38(1): 198-208. doi: 10.13801/j.cnki.fhclxb.20200603.005
引用本文: 顾付伟, 顾周越, 朱晓磊, 等. 一种无焊缝连接金属内衬复合材料压力容器的制备工艺及其液压实验[J]. 复合材料学报, 2021, 38(1): 198-208. doi: 10.13801/j.cnki.fhclxb.20200603.005
GU Fuwei, GU Zhouyue, ZHU Xiaolei, et al. Design and hydraulic tests of a metal liner composite overwrapped pressure vessels with seamless connection technology[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 198-208. doi: 10.13801/j.cnki.fhclxb.20200603.005
Citation: GU Fuwei, GU Zhouyue, ZHU Xiaolei, et al. Design and hydraulic tests of a metal liner composite overwrapped pressure vessels with seamless connection technology[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 198-208. doi: 10.13801/j.cnki.fhclxb.20200603.005

一种无焊缝连接金属内衬复合材料压力容器的制备工艺及其液压实验

doi: 10.13801/j.cnki.fhclxb.20200603.005
基金项目: 江苏省研究生科研与实践创新计划(KYCX18_1088);国家自然科学基金(11772147);江苏省高校自然科学基金(16KJB130003)
详细信息
    通讯作者:

    朱晓磊,博士,副教授,硕士生导师,研究方向为固体实验力学、3D打印、激光焊接 E-mail:zhuxiaolei@njtech.edu.cn

  • 中图分类号: TB330.1

Design and hydraulic tests of a metal liner composite overwrapped pressure vessels with seamless connection technology

  • 摘要: 纤维缠绕复合材料压力容器(COPV)由于其轻质高强及先漏后爆等特性在航空航天、路面交通和石油化工等领域得到广泛应用。基于纤维缠绕工艺的特点,提出了一种新型无焊缝连接金属内衬COPV结构及其制备工艺。并通过缠绕工艺及在封头直边设置密封槽,解决了内衬的封头与筒体之间的连续性和密封性问题。基于该结构的特点,一种辅助成型工装被发明,成功实现了这种新型内衬结构的缠绕成型问题。之后,通过液压试验验证了该结构的可行性,该新型容器能够承受110 MPa的爆破设计压力。进一步对容器剖面进行宏观分析,获得了该结构的三种损伤模式。最后,基于Chang-Chang失效准则及层间内聚力失效模型,通过编写用户子程序VUMAT建立了该新型结构的有限元计算模型,确定了分层损伤为该结构的主要损伤模式及位于封头与筒身过渡区的纤维拉伸断裂为该结构的主要失效模式。

     

  • 图  1  新型无焊缝连接复合材料压力容器(COPV)结构示意图

    Figure  1.  Structure of a novel composite overwrapped pressure vessel (COPV) with seamless connection technology

    图  2  封头部件结构示意图

    Figure  2.  Specific structure of head components

    图  3  COPV结构的制备: (a)金属内衬; (b)过渡层; (c)第一工艺层;(d)第二工艺层; (e)试件

    Figure  3.  Preparation of COPV structure: (a) Assembly of metal liner; (b) Transition layer; (c) First process layer; (d) Second process layer; (e) Specimens

    图  4  辅助成型工装结构装配示意图

    Figure  4.  Assembly drawing of auxiliary forming tools

    T1—Torque produced by tension of fiber; T2—Torque caused by friction resistance at support end; Ttotal—Total torque provided by clamping end

    图  5  电动往复式柱塞泵爆破实验台

    Figure  5.  Electric reciprocating plunger pump blasting test-bed

    图  6  COPV的三次加载曲线

    Figure  6.  Three loading curves of COPV

    图  7  COPV的第四次加载曲线示意图

    Figure  7.  Fourth loading curve of COPV

    图  8  新型COPV的损伤情况: (a)新型COPV损伤分布图; (b)第一和第二工艺层之间的分层损伤; (c)封头过渡区域第二工艺层内的层间分层损伤; (d)金属内衬轴向皱曲损伤

    Figure  8.  Damage of novel COPV: (a) Damage distribution of novel COPV; (b) Delamination damage between the first and second process layer; (c) Delamination damage in the second process layer of head transition region; (d) Buckling and axial shrinkage of inner

    图  9  复合材料纵向拉伸及纵向压缩损伤演化曲线

    Figure  9.  Damage evolution curves of longitudinal tension and compression of composites

    XT—Fiber tension strength; E1—Fiber tension modulus; $d_{\rm{f}}^{\rm{T}} $—Tensile damage state variable; $\varepsilon _{0,1}^{\rm{T}} $—Initial damage strain of fiber tension; $\varepsilon _{{\rm{f}},1}^{\rm{T}} $—Failure strain of fiber tension

    图  10  新型COPV结构有限元模型

    Figure  10.  Finite element model of novel COPV

    图  11  不同压力条件下第一与第二工艺缠绕层之间的粘接层分层损伤

    Figure  11.  Delamination damage failure of adhesive layer between the first and second process winding layers under different pressure conditions

    图  12  内压为105 MPa时的纤维缠绕层应力分布及局部纤维拉伸损伤(a)及内压为112.5 MPa时的纤维拉伸失效分布云图(b)

    Figure  12.  Stress distribution of filament winding layer and local fiber tensile damage under internal pressure of 105 MPa (a), distribution of fiber tensile failure under internal pressure of 112.5 MPa (b)

    图  13  内压为105 MPa时纤维缠绕层筒体部位径向位移

    Figure  13.  Radial displacement of filament wound layers at internal pressure of 105 MPa

    表  1  金属内衬零部件材料和结构参数

    Table  1.   Material and structure parameters of metal linercomponents

    PartDimensionMaterial
    Cylinder Φ105 mm×2.5 mm 6063-T5
    Sealing ring DN100 PTFE+Polyurethane rubber
    Head Ellipsoidal-head 6063-T5
    Notes: DN100—Nominal diameter is 100 mm; PTFE—Polytetrafluoroethylene; 6063-T5—Aluminum alloy.
    下载: 导出CSV

    表  2  碳纤维缠绕层的设计参数

    Table  2.   Design parameters of carbon fiber winding layers

    $\alpha $/(°)${P_{\rm{b}}}$/MPa${\sigma _{{\rm{db}}}}$/MPaKhfa/mmh/mm
    15 110 4900 0.4 1.578 2.8
    Notes: α—Filament winding angle; Pb—Design burst pressure; σdb—Single fiber strength; K—Fiber efficiency factors; hfa—Spiral wounding thickness; h—Circumferential wounding thickness.
    下载: 导出CSV

    表  3  新型COPV的有限元计算模型材料参数

    Table  3.   Material parameters of novel COPV in finite element model

    Intralaminar properties of single layerE1=158 GPa; E2= E3=3 GPa; u12=u13=0.307; u23=0.45;
    G12=G13=4.71 GPa; G23=3.99 GPa; XT=2600 MPa;
    XC=1188 MPa; YT=71.4 MPa; YC=202 MPa; S12=S13=95.2;
    S23=65 MPa; GfT=50.5 N·mm−1; GfC=30.5 N·mm−1;
    GmT=0.22 N·mm−1; GmC=1.1 N·mm−1
    Interlaminar properties of cohesive surfaceGⅠC=0.52 N·mm−1; GⅡC=GⅢC= 0.92 N·mm−1;
    KN=120 GPa·mm−1; KS=KT=43 GPa·mm−1;
    N=30 MPa; S=T=80 MPa
    6063-T5E=70000 MPa; u=0.3; σs=241 MPa; σb=324 MPa
    Notes: E1, E2, E3—Modulus in fiber direction, in-plane transverse modulus and out-of-plane transverse modulus, respectively; u12, G12, S12—Poisson’s ratio, shear modulus and shear strength of fiber direction and in-plane transverse direction, respectively; u13, G13, S13—Poisson’s ratio, shear modulus and shear strength of fiber direction and out-of-plane transverse direction, respectively; u23, G23, S23—Poisson’s ratio, shear modulus and shear strength of in-plane transverse direction and out-of-plane transverse direction, respectively; XT, XC, YT, YC—Tension strength and compression strength in fiber direction and transverse direction, respectively; GfT, GfC, GmT, GmC—Strain energy release rates of fiber tension, fiber compression, matrix tension and matrix compression, respectively; GⅠC, GⅡC, GⅢC—Critical strain energy release rates corresponding to mode Ⅰ, mode Ⅱ and mode Ⅲ cracks, respectively; KN, KS, KT—Interface moduli of three crack modes; N, S, T—Interface strengths of three crack modes; E, u, σs, σb—Modulus, Poisson’s ratio, yield strength and tensile strength of metal inner, respectively.
    下载: 导出CSV
  • [1] 郭凯特, 王春, 文立华, 等. 不等开口纤维增强树脂复合材料缠绕壳体非测地线线型设计[J]. 复合材料学报, 2019, 36(5):1189-1199.

    GUO Kaite, WANG Chun, WEN Lihua, et al. Winding pattern design of fiber reinforced resin polymer composites winding vessels with unequal pollar openings based on non-geodesics[J]. Acta Materiae Compositae Sinica,2019,36(5):1189-1199(in Chinese).
    [2] 杨斌, 胡超杰, 轩福贞, 等. 多壁碳纳米管界面传感器及其在纤维缠绕压力容器原位监测中的应用[J]. 复合材料学报, 2020, 37(2):336-344.

    YANG Bin, HU Chaojie, XUAN Fuzhen, et al. Multi-walled carbon nanotube interfacial sensor and its application in in-situ monitoring of the filament wound pressure vessel[J]. Acta Materiae Compositae Sinica,2020,37(2):336-344(in Chinese).
    [3] 周威威. 复合材料气瓶内衬稳定性分析及爆破压力研究[D]. 杭州: 浙江大学, 2013.

    ZHOU Weiwei. Internal liner stability analysis and burst pressure study of composite pressure vessel[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
    [4] 陈小平, 王喜占. T800碳纤维在复合材料压力容器上的应用研究[J]. 高科技纤维与应用, 2017, 42(3):45-49. doi: 10.3969/j.issn.1007-9815.2017.03.011

    CHEN Xiaoping, WANG Xizhan. T800 carbon fiber in the application of composite pressure vessel research[J]. Hi-Tech Fiber and Application,2017,42(3):45-49(in Chinese). doi: 10.3969/j.issn.1007-9815.2017.03.011
    [5] BARTHELEMY H, WEBER M, BARBIER F. Hydrogen storage: Recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy,2017,42(11):7254-7262. doi: 10.1016/j.ijhydene.2016.03.178
    [6] 郑津洋, 李静媛, 黄强华, 等. 车用高压燃料气瓶技术发展趋势和我国面临的挑战[J]. 压力容器, 2014, 31(2):43-51. doi: 10.3969/j.issn.1001-4837.2014.02.007

    ZHENG Jinyang, LI Jingyuan, HUANG Qianghua, et al. Technology trends of high pressure vehicle fuel tanks and challenges for China[J]. Pressure Vessel Technology,2014,31(2):43-51(in Chinese). doi: 10.3969/j.issn.1001-4837.2014.02.007
    [7] 中国国家标准化管理委员会. 车用压缩氢气铝内胆碳纤维全缠绕气瓶: GB/T 35544—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of of the people’s Republic of China. Fully-wrapped carbon fiber reinforced cylinders with an aluminum liner for the on-board storage of compressed hydrogen as a fuel for land vehicles: GB/T 35544—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [8] 陈潇洒. 铝内胆碳纤维全缠绕高压气瓶的轻量化与长寿命技术研究[D]. 南京: 南京航空航天大学, 2017.

    CHEN Xiaosa. Research on lightweight and long-life technology of aluminum alloy liner carbon fiber full-wound cylinder[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [9] 王静娴. 大容积全缠绕复合材料气瓶设计方法研究[D]. 太原: 太原理工大学, 2015.

    WANG Jingxian. Study on design method of large capacity fully wrapped composite cylinders[D]. Taiyuan: Taiyuan University of Technology, 2015(in Chinese).
    [10] PRAMOD R, KRISHNADASAN C, SIVA SHANMUGAM N. Design and finite element analysis of metal-elastomer lined composite over wrapped spherical pressure vessel[J]. Composite Structures,2019,224:111028. doi: 10.1016/j.compstruct.2019.111028
    [11] 克莱伯 R M, 卡斯利 J E , 基亚 H G, 等. 复合材料压力容器及其组装方法: 中国, CN201110241868.7[P]. 2011-06-30.

    KLEIBER R M, CASLEY J E, KIA H G, et al. Composite pressure vessel and its assembly method: China, CN201110241868.7[P]. 2011-06-30(in Chinese).
    [12] 陈汝训. 炭纤维壳体封头设计的几个问题[J]. 固体火箭技术, 2009, 32(5):543-547. doi: 10.3969/j.issn.1006-2793.2009.05.018

    CHEN Ruxun. Some problems for the dome design of carbon fiber case[J]. Journal of Solid Rocket Technology,2009,32(5):543-547(in Chinese). doi: 10.3969/j.issn.1006-2793.2009.05.018
    [13] 陈汝训. 纤维缠绕圆环压力容器设计分析[J]. 固体火箭技术, 2006, 29(6):446-450. doi: 10.3969/j.issn.1006-2793.2006.06.014

    CHEN Ruxun. Design analysis on the filament-wound toroidal pressure vessel[J]. Journal of Solid Rocket Technology,2006,29(6):446-450(in Chinese). doi: 10.3969/j.issn.1006-2793.2006.06.014
    [14] LI Z, TANG F, CHEN Y, et al. Elastic and inelastic buckling of thin-walled steel liners encased in circular host pipes under external pressure and thermal effects[J]. Thin-Walled Structures,2019,137:213-223. doi: 10.1016/j.tws.2018.12.044
    [15] 王欢, 余珊, 王特. 钛合金内衬碳纤维缠绕气瓶水压后轴向缩短分析[J]. 玻璃钢/复合材料, 2018(6):34-38. doi: 10.3969/j.issn.1003-0999.2018.06.006

    WANG Huan, YU Shan, WANG Te. Axial shortening analysis of carbon filament-wound pressure cylinder with titanium alloy liner after hydrostatic test[J]. Fiber Reinforced Plastics/Composites,2018(6):34-38(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.06.006
    [16] 贾利勇, 贺高, 把余炜. 三维渐进失效模型在层压板失效分析中的应用[C]//第17届全国复合材料学术会议. 北京: 中国航空学会, 2012: 129-135.

    JIA Liyong, HE Gao, BA Yuwei. 3D progressive failure model for composite laminates failure analysis[C]//17th National Conference on Composite Materials. Beijing: Chinese Society of Aeronautics and Astronautics, 2012: 129-135(in Chinese).
    [17] 贾利勇, 廖斌斌, 于龙, 等. 基于Puck理论的复合材料层合板横向剪切失效分析[J]. 复合材料学报, 2019, 36(10):2286-2293.

    JIA Liyong, LIAO Binbin, YU Long, et al. Failure analysis of composite laminates with Puck’s theory under transverse shear load[J]. Acta Materiae Compositae Sinica,2019,36(10):2286-2293(in Chinese).
    [18] 贾利勇, 贾欲明, 于龙, 等. 基于多尺度模型的复合材料厚板G13剪切失效分析[J]. 复合材料学报, 2017, 34(4):558-566.

    JIA Liyong, JIA Yuming, YU Long, et al. Failure analysis of thick composite laminates with multi-scale modelling under G13 out-of-plane shear loading[J]. Acta Materiae Compositae Sinica,2017,34(4):558-566(in Chinese).
    [19] RAFIEE R, GHORBANHOSSEINI A, REZAEE S. Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact[J]. Composite Structures,2019,226:111230. doi: 10.1016/j.compstruct.2019.111230
    [20] GU F, YUAN X, ZHU X, et al. Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion[J]. Engineering Fracture Mechanics,2020,228:106901. doi: 10.1016/j.engfracmech.2020.106901
    [21] LI N, CHEN P. Failure prediction of T-stiffened composite panels subjected to compression after edge impact[J]. Composite Structures,2017,162:210-226. doi: 10.1016/j.compstruct.2016.12.004
    [22] RICCIO A, DI COSTANZO C, DI GENNARO P, et al. Intra-laminar progressive failure analysis of composite laminates with a large notch damage[J]. Engineering Failure Analysis,2017,73:97-112. doi: 10.1016/j.engfailanal.2016.12.012
    [23] ZU L, XU H, WANG H, et al. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures,2019,207:41-52. doi: 10.1016/j.compstruct.2018.09.007
    [24] CANAL J P, MICUZZI A, LOGARZO H, et al. On the finite element modeling of COPVs[J]. Computers & Structures,2019,220:1-13.
    [25] ZU L, WANG J, LI S. Influence of fiber slippage coefficient distributions on the geometry and performance of composite pressure vessels[J]. Polymer Composites,2016,37(1):315-321.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1792
  • HTML全文浏览量:  799
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 录用日期:  2020-06-02
  • 网络出版日期:  2020-06-03
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回