留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响

杨旭东 郑远兴 李威挺 肖冠宇 纵荣荣

杨旭东, 郑远兴, 李威挺, 等. Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响[J]. 复合材料学报, 2021, 38(1): 186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001
引用本文: 杨旭东, 郑远兴, 李威挺, 等. Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响[J]. 复合材料学报, 2021, 38(1): 186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001
YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001
Citation: YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001

Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响

doi: 10.13801/j.cnki.fhclxb.20200603.001
基金项目: 天津市科技计划项目(20YDTPJC01600)
详细信息
    通讯作者:

    杨旭东,博士,副教授,硕士生导师,研究方向为多孔材料和金属基复合材料 E-mail:xdyangtj@163.com

  • 中图分类号: TB331

Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams

  • 摘要: 针对金属基复合材料,添加合金元素是提升其综合性能的有效途径。本文通过高能球磨和填加造孔剂法,制备了添加Si元素的碳纳米管(CNTs)增强铝基(CNTs/Al-Si)复合泡沫,通过准静态压缩实验测试其压缩性能和吸能性能,进一步研究烧结温度和不同Si元素含量对CNTs/Al-Si复合泡沫微观组织、压缩性能和吸能性能的影响,并结合压缩断口形貌分析其断裂失效机制。结果表明:随着烧结温度的升高,CNTs/Al-Si复合泡沫的致密度和结合性提高,当烧结温度为600℃、Si质量分数为7wt%时,CNTs/Al-Si复合泡沫的屈服强度、平台应力和吸能性能,较烧结温度为550℃时分别提高了98.4%、167.7%和166.4%;Si元素的添加可以在球磨过程中细化复合粉末颗粒,经合金化后的CNTs/Al-Si复合泡沫强度和塑性均有所改善。与CNTs/Al复合泡沫相比,Si质量分数为7wt%的CNTs/Al-Si复合泡沫屈服强度和平台应力分别提高了58.5%和117.8%,吸能性能明显提高。

     

  • 图  1  原材料形貌: (a)Al粉; (b)Si粉; (c)尿素颗粒; (d)碳纳米管(CNTs)/Al复合粉末; (e)高倍透射下的CNTs

    Figure  1.  Morphologies of raw materials: (a) Al powders; (b) Si powders; (c) Carbamide particles; (d) Carbon nanotubes (CNTs)/Al composite powders; (e) TEM image of CNTs

    图  2  CNTs/Al-Si复合泡沫材料的制备流程(a)、宏观图片(b)和泡孔的SEM图像(c)

    Figure  2.  Schematic diagram of preparation process (a), macro picture (b) and SEM image of foam cell (c) of CNTs/Al-Si composite foams

    图  3  不同烧结温度下Si质量分数为7wt%的CNTs/Al-Si复合泡沫的金相组织像和致密度

    Figure  3.  Optical microstructure images and density of CNTs/Al-Si composite foams with Si mass fraction of 7wt% at different sintering temperatures

    图  4  不同烧结温度下Si质量分数为7wt%的CNTs/Al-Si复合泡沫的应力-应变曲线(a)、吸能曲线(b)及屈服强度和平台应力变化(c)

    Figure  4.  Stress-strain curves (a), energy absorption curves (b), yield strength and plateau stress (c) of CNTs/Al-Si composite foams with Si mass fraction of 7wt% at different sintering temperatures

    图  5  不同Si含量的CNTs/Al-Si复合粉末球磨后的SEM图像

    Figure  5.  SEM images of CNTs/Al-Si composite powders with different contents of Si after ball milling ((a) 0wt% Si; (b) 3wt% Si; (c) 7wt% Si; (d) 12wt% Si)

    图  6  不同Si含量的CNTs/Al-Si复合粉末的平均粒径

    Figure  6.  Mean powder size of CNTs/Al-Si composite powders with different contents of Si

    图  7  不同Si含量的CNTs/Al-Si复合泡沫的金相组织图像

    Figure  7.  Optical microstructure images of CNTs/Al-Si composite foams with different contents of Si ((a) 0wt% Si; (b) 3wt% Si; (c) 7wt% Si; (d) 12wt% Si)

    图  8  不同Si含量的CNTs/Al-Si复合泡沫的基体颗粒间距

    Figure  8.  Matrix spacing of CNTs/Al-Si composite foams with different contents of Si

    图  9  Si含量为3wt%的CNTs/Al-Si复合泡沫基体颗粒间隙的SEM图像和EDS图谱

    Figure  9.  SEM image and EDS spectrum of matrix particle gap of CNTs/Al-Si composite foams with Si content of 3wt%

    图  10  不同Si含量的CNTs/Al-Si复合泡沫的应力-应变曲线(a)、吸能曲线(b)及屈服强度、平台应力和吸能(c)

    Figure  10.  Stress-strain curves (a), energy absorption curves (b) and yield strength, plateau stress and energy absorption (c) of CNTs/Al-Si composite foams with different contents of Si

    图  11  不同Si含量的CNTs/Al-Si复合泡沫断口形貌的SEM图像

    Figure  11.  SEM images of fracture morphology of CNTs/Al-Si composite foams with different contents of Si ((a), (e) 0wt% Si; (b), (f) 3wt% Si; (c), (g) 7wt% Si; (d), (h) 12wt% Si))

  • [1] BANHART J, SEELIGER H W. Aluminum foam sandwich panels: Manufacture, metallurgy and applications[J]. Advanced Engineering Materials,2008,10(9):793-802. doi: 10.1002/adem.200800091
    [2] 王应武, 夏宇, 王志平, 等. 泡沫铝材料应用研究现状[J]. 材料导报, 2013, 27(15):132-134. doi: 10.3969/j.issn.1005-023X.2013.15.027

    WANG Yingwu, XIA Yu, WANG Zhiping, et al. Research status on applications of aluminum foams[J]. Materials Review,2013,27(15):132-134(in Chinese). doi: 10.3969/j.issn.1005-023X.2013.15.027
    [3] YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue,2019,121:272-280. doi: 10.1016/j.ijfatigue.2018.11.008
    [4] LI W T, YANG X D, HE C N, et al. Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets[J]. Carbon,2019,153:396-406. doi: 10.1016/j.carbon.2019.07.043
    [5] YANG K M, YANG X D, LIU E Z, et al. High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Science and Engineering A,2018,729:487-495. doi: 10.1016/j.msea.2017.09.011
    [6] 杨旭东, 杨昆明, 邹田春, 等. 球磨对碳纳米管增强泡沫铝基复合材料压缩与吸能性能的影响[J]. 复合材料学报, 2018, 35(6):1518-1524.

    YANG Xudong, YANG Kunming, ZOU Tianchun, et al. Effect of ball milling on the compressive property and energy absorption capacity of the carbon nanotube reinforced aluminum composite foams[J]. Acta Materiae Compositae Sinica,2018,35(6):1518-1524(in Chinese).
    [7] DUARTE I, VENTURA E, OLHERO S, et al. An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes[J]. Carbon,2015,95:589-600. doi: 10.1016/j.carbon.2015.08.065
    [8] 杨旭东, 毕智超, 陈亚军, 等. 泡沫铝基复合材料的研究进展[J]. 热加工工艺, 2015, 44(8):12-16.

    YANG Xudong, BI Zhichao, CHEN Yajun, et al. Recent advances in aluminum matrix composite foam[J]. Hot Working Technology,2015,44(8):12-16(in Chinese).
    [9] TANG Z K, ZHANG L Y, WANG N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes[J]. Science,2001,292(5526):2462-2465.
    [10] 韦进全, 张先锋, 王昆林. 碳纳米管宏观体[J]. 北京: 清华大学出版社, 2006.

    WEI Jinquan, ZHANG Xianfeng, WANG Kunlin. Macrostructure of carbon nanotubes[J]. Beijing: Tsinghua University Press, 2006(in Chinese).
    [11] ZHOU X, SHIN E, WANG K W, et al. Interfacial damping characteristics of carbon nanotube-based composites[J]. Composite Science & Technology,2004,64(15):2425-2437.
    [12] YANG X D, YANG K M, WANG J W, et al. Compressive response and energy absorption characteristics of in situ grown CNT-reinforced Al composite foams[J]. Advanced Engineering Materials,2017,19(12):1700431.
    [13] DUARTE I, FERREIRA J M F. Composite and nanocomposite metal foams[J]. Materials,2016,9(2):79. doi: 10.3390/ma9020079
    [14] ZHANG Z, DING J, XIA X, et al. Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes[J]. Materials and Design,2015,88:359-365. doi: 10.1016/j.matdes.2015.09.017
    [15] IZADI H, GERLICH A P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites[J]. Carbon,2012,50(12):4744-4749. doi: 10.1016/j.carbon.2012.06.012
    [16] ESAWI A M K, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites[J]. Materials Science and Engineering A,2009,508(1-2):167-173. doi: 10.1016/j.msea.2009.01.002
    [17] YOO S J, HAN S H, KIM W J. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scripta Materialia,2013,68(9):711-714.
    [18] LEE S, SHIN S, SUN Y, et al. Friction stir welding of multi-walled carbon nanotubes reinforced Al matrix composites[J]. Materials Characterization,2018,145:653-663. doi: 10.1016/j.matchar.2018.09.033
    [19] 聂俊辉, 史娜, 张亚丰, 等. 镀W碳纳米管增强Al基复合材料的力学性能与导电率[J]. 粉末冶金技术, 2011, 29(5):344-350, 356.

    NIE Junhui, SHI Na, ZHANG Yafeng, et al. Mechanical properties and electrical conductivity of tungsten-coated carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology,2011,29(5):344-350, 356(in Chinese).
    [20] TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001
    [21] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites: A review[J]. International Materials Reviews,2010,55(1):41-64. doi: 10.1179/095066009X12572530170543
    [22] CHOI H J, SHIN J H, MIN B H, et al. Deformation behavior of Al-Si alloy based nanocomposites reinforced with carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2010,41(2):327-329. doi: 10.1016/j.compositesa.2009.10.013
    [23] YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. Journal of Alloys and Compounds,2013,563:216-220.
    [24] YANG X D, ZOU T C, SHI C S, et al. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites[J]. Materials Science and Engineering A,2016,660:11-18. doi: 10.1016/j.msea.2016.02.062
    [25] YANG K M, YANG X D, LIU E Z, et al. Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams[J]. Materials Science and Engineering A,2017,690:294-302. doi: 10.1016/j.msea.2017.03.004
    [26] ANAS N S, RAMAKRISHNA M, DASH R K, et al. Influence of process control agents on microstructure and mechanical properties of Al alloy produced by mechanical alloying[J]. Materials Science & Engineering A,2019,751:171-182.
    [27] JI G, GROSDIDIER T, BOZZOLO N, et al. The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering[J]. Intermetallics,2007,15(2):108-118. doi: 10.1016/j.intermet.2006.03.006
    [28] GIBSON L J, ASHBY M F. Cellular solids: Structure and properties (Second edition)[J]. Cambridge: Cambridge University Press, 1997.
    [29] YANG X D, HU Q, LI W T, et al. Compression-compression fatigue performance of aluminium matrix composite foams reinforced by carbon nanotubes[J]. Fatigue & Fracture of Engineering Materials & Structures,2020,43(4):744-756.
    [30] ALY M S. Behavior of closed cell aluminum foams upon compressive testing at elevated temperatures: Experimental results[J]. Materials Letters,2007,61(14-15):3138-3141. doi: 10.1016/j.matlet.2006.11.046
    [31] HAKAMADA M, NOMURA T, YAMADA Y, et al. Compressive properties at elevated temperatures of porous aluminum processed by the spacer method[J]. Journal of Materials Research,2005,20(12):3385-3390. doi: 10.1557/jmr.2005.0415
    [32] SAHU S, GOEL M D, MONDAL D P, et al. High temperature compressive deformation behavior of ZA27-SiC foam[J]. Materials Science and Engineering A,2014,607:162-172. doi: 10.1016/j.msea.2014.04.004
    [33] 李海东. 热压烧结温度对铝基复合材料显微结构和性能的影响[J]. 铸造技术, 2014, 35(12):2955-2957.

    LI Haidong. Effect of hot-press sintering temperature on microstructure and properties of Al-matrix composites[J]. Foundry Technology,2014,35(12):2955-2957(in Chinese).
    [34] 范冰冰, 王彬彬, 陈浩, 等. 碳纳米管/铝基复合材料的制备与性能[J]. 沈阳大学学报(自然科学版), 2013, 25(2):128-131.

    FAN Bingbing, WANG Binbin, CHEN Hao, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites[J]. Journal of Shenyang University (Natural Science),2013,25(2):128-131(in Chinese).
    [35] 贾义旺, 张德恩, 卢锦德. 过烧对新型高强度铝合金组织性能的影响[J]. 热加工工艺, 2013, 42(4):179-181.

    JIA Yiwang, ZHANG Deen, LU Jinde. Effect of overburning on the microstructure and properties of new high-strength aluminum alloy[J]. Hot Working Technology,2013,42(4):179-181(in Chinese).
    [36] CHANG J, MOON I, CHOI C. Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals[J]. Journal of Materials Science,1998,33(20):5015-5023. doi: 10.1023/A:1004463125340
    [37] CHANG J Y, KIM G H, MOON I G, et al. Rare earth concentration in the primary Si crystal in rare earth added Al-21wt% Si alloy[J]. Scripta Materialia,1998,39(3):307-314.
    [38] JEON J H, SHIN J H, BAE D H. Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys[J]. Materials Science & Engineering A,2019,748:367-370.
    [39] JIGAJINNI S M, VENKATESWARLU K, KORI S A. Effect of a grain refiner cum modifier on mechanical properties of Al-7Si and Al-11Si alloys[J]. Metals & Materials International,2013,19(2):171-181.
    [40] 杨旭东, 陈亚军, 师春生, 等. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9):93-100.

    YANG Xudong, CHEN Yajun, SHI Chunsheng, et al. Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites[J]. Journal of Materials Engineering,2017,45(9):93-100(in Chinese).
    [41] 王鹏飞, 徐松林, 胡时胜. 不同温度下泡沫铝压缩行为与变形机制探讨[J]. 振动与冲击, 2013, 32(5):16-19. doi: 10.3969/j.issn.1000-3835.2013.05.004

    WANG Pengfei, XU Songlin, HU Shisheng. Compressive behavior and deformation mechanism of aluminum foam under different temperature[J]. Journal of Vibration and Shock,2013,32(5):16-19(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.05.004
    [42] 郭磊, 李天阳, 温小椿, 等. 过滤铸造法调控过共晶硅铝合金中初晶硅尺寸[J]. 稀有金属材料与工程, 2019, 48(7):2138-2145.

    GUO Lei, LI Tianyang, WEN Xiaochun, et al. Control of primary silicon crystal size in hypereutectic Al-Si alloys by filtering casting method[J]. Rare Metal Materials and Engineering,2019,48(7):2138-2145(in Chinese).
    [43] DAMAVANDI E, NOUROUZI S, RABIEE S M, et al. Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2019,29(5):931-940.
    [44] CHANDRA K, KAIN V. Brittle failure of hypereutectic Al-Si alloy component[J]. Journal of Failure Analysis and Prevention,2015,15(5):679-685. doi: 10.1007/s11668-015-9996-6
  • 加载中
图(12)
计量
  • 文章访问数:  1233
  • HTML全文浏览量:  390
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 录用日期:  2020-05-06
  • 网络出版日期:  2020-06-03
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回