留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可交联磷酰胆碱聚合物改性聚甲基戊烯中空纤维膜

叶非华 易国斌

叶非华, 易国斌. 可交联磷酰胆碱聚合物改性聚甲基戊烯中空纤维膜[J]. 复合材料学报, 2021, 38(2): 479-486. doi: 10.13801/j.cnki.fhclxb.20200522.001
引用本文: 叶非华, 易国斌. 可交联磷酰胆碱聚合物改性聚甲基戊烯中空纤维膜[J]. 复合材料学报, 2021, 38(2): 479-486. doi: 10.13801/j.cnki.fhclxb.20200522.001
YE Feihua, YI Guobin. Cross-linkable phosphonylcholine polymer modified polymethylpentene hollow fiber membrane[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 479-486. doi: 10.13801/j.cnki.fhclxb.20200522.001
Citation: YE Feihua, YI Guobin. Cross-linkable phosphonylcholine polymer modified polymethylpentene hollow fiber membrane[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 479-486. doi: 10.13801/j.cnki.fhclxb.20200522.001

可交联磷酰胆碱聚合物改性聚甲基戊烯中空纤维膜

doi: 10.13801/j.cnki.fhclxb.20200522.001
基金项目: 广东省高校创新强校重大科研项目(2017KZDXM026)
详细信息
    通讯作者:

    易国斌,博士,教授,博士生导师,研究方向为功能高分子材料、纳米材料与复合材料 E-mail:yigb@gdut.edu.cn

  • 中图分类号: TB332;TQ316.6

Cross-linkable phosphonylcholine polymer modified polymethylpentene hollow fiber membrane

  • 摘要: 通过自由基聚合反应制备了可交联磷酰胆碱聚合物(Poly(MPC-co-LMA-co-TSMA), PMLT)。将该聚合物溶液涂覆在聚甲基戊烯中空纤维膜(PMPHFM)表面,经交联处理后可形成稳定的PMLT聚合物涂层,得到改性复合材料PMLT/PMPHFM。溶胀度测试表明PMLT聚合物膜具有良好的亲水性能,且溶胀度随着2-甲基丙烯酰氧基乙基磷酰胆碱(MPC)含量和温度的升高而增大。ATR-FTIR和XPS分析表明PMLT/PMPHFM表面的PMLT聚合物涂层含有磷酰胆碱基团。SEM和荧光测试结果显示PMLT/PMPHFM表面包覆有均匀的聚合物涂层,且该涂层能够抵抗乙醇溶液和十二烷基硫酸钠溶液的溶解。血小板黏附和全血接触测试表明,相比空白PMPHFM,PMLT聚合物涂层能够显著减少PMPHFM表面的血小板黏附,降低血液凝结风险。研究结果表明:可交联磷酰胆碱聚合物PMLT具有良好的亲水性能,能够均匀涂覆在PMPHFM的表面,得到具有良好血液相容性的复合材料PMLT/PMPHFM。

     

  • 图  1  Poly(MPC-co-LMA-co-TSMA)(PMLT)聚合物合成路线

    Figure  1.  Synthesis route of poly(MPC-co-LMA-co-TSMA) (PMLT) copolymers

    MPC—2-methacryloyloxyethyl phosphorylcholine; LMA—Lauryl methacrylate; TSMA —3-(trimethoxysilyl)propyl methacrylate; AIBN—2,2-azo diisobutyronitrile; IPA—Isopropyl alcohol

    图  2  PMLT聚合物涂层交联反应机制

    Figure  2.  Cross-linking reaction scheme for PMLT polymer coating

    图  3  PMLT聚合物膜的含水量与溶胀时间和温度的关系

    Figure  3.  Relation between water content with time and temperature of PMLT copolymers

    图  4  聚甲基戊烯中空纤维膜(PMPHFM)和PMLT/PMPHFM复合材料的FTIR图谱

    Figure  4.  FTIR spectra of polymethylpentene hollow fiber membrane (PMPHFM) and PMLT/PMPHFM composite

    图  5  PMPHFM和PMLT/PMPHFM复合材料的XPS图谱

    Figure  5.  XPS spectra of PMPHFM and PMLT/PMPHFM composite

    图  6  PMPHFM和PMLT/PMPHFM复合材料表面的SEM图像

    Figure  6.  SEM images of PMPHFM and PMLT/PMPHFM composite surface

    图  7  PMPHFM和PMLT/PMPHFM复合材料的荧光显微镜图像

    Figure  7.  Fluorescence microscope images of PMPHFM and PMLT/PMPHFM composite(Visible light microscope images of bare PMPHFM (a) and PMLT/PMPHFM (b); (c) and (d) are the same images viewed in fluorescence mode; (e) and (f) are fluorescence images of PMLT/PMPHFM after treatment with 90vol% ethanol aqueous solution or mass fraction 1wt% sodium dodecyl sulfonate (SDS) aqueous solution)

    图  8  PMPHFM和PMLT/PMPHFM复合材料表面血小板黏附的SEM图像

    Figure  8.  SEM images of platelet adhesion on the surface of PMPHFM and PMLT/PMPHFM composite

    图  9  PMPHFM和PMLT/PMPHFM复合材料表面全血接触的SEM图像

    Figure  9.  SEM images of whole blood contact on the surface of PMPHFM and PMLT/PMPHFM composite

    表  1  PMLT聚合物单体投料比

    Table  1.   Monomer feed ratio of PMLT copolymers

    SampleMonomer feed mole mass fraction/wt%
    MPCLMATSMA
    PMLT15 15 75 10
    PMLT25 25 65 10
    PMLT35 35 55 10
    PMLT45 45 45 10
    下载: 导出CSV

    表  2  室温下PMLT聚合物膜的平衡含水量(We)

    Table  2.   Equilibrium water content (We) of PMLT copolymers at room temperature

    PMLT15PMLT25PMLT35PMLT45
    We/%17.3744.7951.1168.45
    下载: 导出CSV
  • [1] MICHALJANIČ OV I, SLEPICKA P, KAS LKOV N, et al. Plasma and laser treatment of PMP for biocompatibility improvement[J]. Vacuum,2014,107:184-190. doi: 10.1016/j.vacuum.2014.01.023
    [2] ZHENG Z, WANG W, HUANG X, et al. Fabrication, characterization, and hemocompatibility investigation of polysulfone grafted with polyethylene glycol and heparin used in membrane oxygenators[J]. Artificial Organs,2016,10(11):219-229.
    [3] GRAY B, EL-SABBAGH A, ROJAS-PE A A, et al. Development of an Artificial placenta IV: 24-hour venovenous extracorporeal life support in premature lambs[J]. ASAIO Journal,2012,58:148-154.
    [4] ISHIHARA K, SHINOZUKA T, HANAZAKI Y, et al. Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface[J]. Journal of Biomaterials Science Polymer Edition,1999,10:271-282. doi: 10.1163/156856299X00342
    [5] MORO T, TAKATORI Y, ISHIHARA K, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis[J]. Nature Materials,2004,3:829-836. doi: 10.1038/nmat1233
    [6] 宫美慧, 蒋树林, 李咏梅, 等. 人工膜肺氧合器临床应用研究及发展趋势[J]. 现代生物医学进展, 2015, 21:196-200.

    GONG M H, JIANG S L, LI Y M, et al. Development and clinical application of artificial lungs[J]. Progress in Modern Biomedicine,2015,21:196-200(in Chinese).
    [7] TEOTIA R S, DAHE G J, BELLARE J. In-situ coating of 2-methacryloyloxyethyl phosphorylcholine polymer on polysulfone hollow fiber membranes for hemodialysis[J]. Journal of Computational & Theoretical Nanoscience,2014,20(5):A105.
    [8] NISHIGOCHI S, ISHIGAMI T, MARUYAMA T, et al. Improvement of antifouling properties of polyvinylidene fluoride hollow fiber membranes by simple dip coating of phosphorylcholine copolymer via hydrophobic interactions[J]. Indengchemres,2014,53(6):2491-2497.
    [9] WANG Y B, GONG M, YANG S, et al. Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane[J]. Journal of Membrane Science,2014,452:29-36. doi: 10.1016/j.memsci.2013.10.032
    [10] WANG Y B, SHI K H, JIANG H L, et al. Significantly reduced adsorption and activation of blood components in a membrane oxygenator system coated with crosslinkable zwitterionic copolymer[J]. Acta Biomaterialia,2016,40:153-161. doi: 10.1016/j.actbio.2016.02.036
    [11] HASEGAWA T, IWASAKI Y, ISHIHARA K. Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer[J]. Journal of Biomedical Materials Research,2002,63(3):333-341. doi: 10.1002/jbm.10210
    [12] ASANUMA Y, INOUE Y, YUSA S, et al. Hybridization of poly(2-methacryloyloxyethyl phosphorylcholine-block-2-ethylhexyl methacrylate) with segmented polyurethane for reducing thrombogenicity[J]. Colloids & Surfaces B Biointerfaces,2013,108(4):239-245.
    [13] KOBAYASHI K, OHUCHI K, HOSHI H, et al. Segmented polyurethane modified by photopolymerization and cross-linking with 2-methacryloyloxyethyl phosphorylcholine polymer for blood-contacting surfaces of ventricular assist devices[J]. Journal of Artificial Organs, 2005, 8(4): 237-244.
    [14] SUGIHARA S, BLANAZS A, ARMES S P, et al. Aqueous dispersion polymerization: A new paradigm for in situ block copolymer self-assembly in concentrated solution[J]. Journal of the American Chemical Society,2011,133(39):15707-15713. doi: 10.1021/ja205887v
    [15] GODA T, KJALL P, ISHIHARA K, et al. Biomimetic interfaces reveal activation dynamics of C-reactive protein in local microenvironments[J]. Advanced Healthcare Materials,2014,3(11):1733-1738. doi: 10.1002/adhm.201300625
    [16] ZHANG S, BENMAKROHA Y, ROLFE P, et al. Development of a haemocompatible pO2 sensor with phospholipid-based copolymer membrane[J]. Biosensors & Bioelectronics,1996,11(10):1019.
    [17] GONG M, WINNIK F M, DANG Y, et al. Cell membrane mimetic films immobilized by synergistic grafting and crosslinking[J]. Soft Matter,2013,9(17):4501-4508. doi: 10.1039/c3sm00086a
    [18] MING G, SHAN Y, MA J N, et al. Tunable cell membrane mimetic surfaces prepared with a novel phospholipid polymer[J]. Applied Surface Science,2008,255(2):555-558. doi: 10.1016/j.apsusc.2008.06.148
    [19] 蔡立彬. 有机硅改性水凝胶角膜接触镜材料的研究[D]. 西安: 西北工业大学, 2006.

    CAI L B. Study on silicane modified copolymer hydrogel for contact lens[D]. Xi'an: Northwestern Polytechnical University, 2006(in Chinese).
    [20] 李琳, 辛忠, 王俊华. 磷酰胆碱共聚物的合成及膜的生物相容性[J]. 膜科学与技术, 2012, 32(1):40-45. doi: 10.3969/j.issn.1007-8924.2012.01.007

    LI L, XIN Z, WANG J H. Synthesis and biocompatibility of phosphorylcholine polymer membranes[J]. Membrane Science and Technology,2012,32(1):40-45(in Chinese). doi: 10.3969/j.issn.1007-8924.2012.01.007
    [21] LEWIS A L, TOLHURST L A, STRATFORD P W. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation[J]. Biomaterials, 2002, 23(7): 1697-1706.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  518
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 录用日期:  2020-05-19
  • 网络出版日期:  2020-05-22
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回