留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于聚合物复合弹性体柔性封装的阳极键合

赵浩成 梁芳楠 刘茜秀 周琨 尤雪瑞 梁春平 张志超

赵浩成, 梁芳楠, 刘茜秀, 等. 应用于聚合物复合弹性体柔性封装的阳极键合[J]. 复合材料学报, 2021, 38(1): 111-119. doi: 10.13801/j.cnki.fhclxb.20200519.002
引用本文: 赵浩成, 梁芳楠, 刘茜秀, 等. 应用于聚合物复合弹性体柔性封装的阳极键合[J]. 复合材料学报, 2021, 38(1): 111-119. doi: 10.13801/j.cnki.fhclxb.20200519.002
ZHAO Haocheng, LIANG Fangnan, LIU Qianxiu, et al. Anodic bonding applied to flexible packaging using polymer elastomer composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 111-119. doi: 10.13801/j.cnki.fhclxb.20200519.002
Citation: ZHAO Haocheng, LIANG Fangnan, LIU Qianxiu, et al. Anodic bonding applied to flexible packaging using polymer elastomer composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 111-119. doi: 10.13801/j.cnki.fhclxb.20200519.002

应用于聚合物复合弹性体柔性封装的阳极键合

doi: 10.13801/j.cnki.fhclxb.20200519.002
基金项目: 国家自然科学基金(51875384);山西省应用基础研究资助项目(201801D221102);山西省高等学校科技创新资助项目(201802111)
详细信息
    通讯作者:

    赵浩成,博士,讲师,研究方向为功能高分子材料的开发 E-mail:zhaohc4666@163.com

  • 中图分类号: TB34; TG496

Anodic bonding applied to flexible packaging using polymer elastomer composites

  • 摘要: 采用预聚体法制备了三种应用于阳极键合柔性封装的聚合物复合弹性体(PEO-PUEs)阴极材料,并在室温下浇注固化。PEO-PUEs复合材料具有良好的耐热性和柔顺性,5%热分解温度Td,5%高于250℃,玻璃化转变温度Tg低于−40℃,且力学性能良好。当1,4-丁二醇(BDO)含量为50wt%、三羟甲基丙烷(TMP)含量为50wt%、SiO2含量为1wt%时,PEO-PUEs复合材料在阳极键合温度下(65℃)具有较高的离子导电率,PEO-PUEs复合材料的离子导电率最高可达1.50×10−3 S·cm−1,符合阳极键合对阴极材料的要求。设计了专用于聚合物复合材料的热引导动态场阳极键合工艺,并成功应用于PEO-PUEs复合材料与Al箔的阳极键合连接,当BDO含量为50wt%、TMP含量为50wt%、SiO2含量为1wt%时,PEO-PUEs复合材料和Al箔阳极键合的连接性能最好,键合界面拉伸强度达1.26 MPa。通过与传统阳极键合工艺对比,热引导动态场阳极键合具有稳定致密的中间键合层,峰值电流和键合时间明显增大,键合界面强度高。本研究从制备聚合物阴极材料和设计相应的阳极键合工艺两个方面,为阳极键合在柔性封装的实际应用提供一些理论基础和参考经验。

     

  • 图  1  聚合物复合弹性体阴极材料(PEO-PUEs)的制备工艺流程图

    Figure  1.  Fabrication process flow chart of polymer elastomer composites (PEO-PUEs)

    PEO—Poly(ethylene oxide); DCM—Dichloromethane; LiTFSI—Lithium bis (trifluoromethanesulphonyl) imide; PTMG—Poly (tetrahydrofuran); TDI-100—2,4-Toluene diisocynate; BDO—Butane-1,4-diol; TMP—Trimethylolpropane

    图  2  PEO-PUEs复合材料的FTIR图谱

    Figure  2.  FTIR spectra of PEO-PUEs composites

    图  3  PEO-PUEs复合材料表面的SEM图像

    Figure  3.  SEM images of surface of PEO-PUEs composites

    图  4  PEO-PUEs复合材料的TGA (a)和DSC曲线(b)

    Figure  4.  TGA (a) and DSC (b) curves of PEO-PUEs composites

    图  5  PEO-PUEs复合材料在65℃的交流阻抗图谱

    Figure  5.  Electrochemical impedance spectroscopy (EIS) of PEO-PUEs composites at 65℃

    图  6  热引导动态场阳极键合(PEO-PUEs/Al)和传统阳极键合(PEO-PUEs/Al*)的时间-电流曲线

    Figure  6.  Time-current curves of anodic bonding designed with thermal guidance and dynamic field (PEO-PUEs/Al) and traditional anodic bonding (PEO-PUEs/Al*)

    图  8  PEO-PUEs/Al和PEO-PUEs/Al*键合界面的SEM图像

    Figure  8.  SEM images of bonding interface of PEO-PUEs/Al and PEO-PUEs/Al*

    图  7  PEO-PUEs/Al阳极键合示意图

    Figure  7.  Schematic diagram of anodic bonding of PEO-PUEs/Al

    表  1  PEO-PUEs复合材料配方

    Table  1.   Formula composition of PEO-PUEs composites

    SampleNCO group of
    prepolymer/wt%
    Chain extension
    coefficient
    PEO based
    electrolyte/wt%
    Composition of chain extenderSiO2/wt%
    BDO/wt%TMP/wt%
    PEO-PUE1 6 0.9 10 100 0 0
    PEO-PUE2 6 0.9 10 50 50 0
    PEO-PUE3 6 0.9 10 50 50 1
    Note: The content of SiO2 is calculated in terms of different percentages mass of prepolymer.
    下载: 导出CSV

    表  2  PEO-PUEs复合材料的热性能和离子导电率

    Table  2.   Thermal properties and ionic conductivities of PEO-PUEs composites

    SampleTd,5%/
    Tg/
    Bulk resistance/ΩIonic conductivity/
    (10−3 S·cm−1)
    PEO-PUE1 254 −49.54 90.92 1.10
    PEO-PUE2 267 −46.81 76.11 1.31
    PEO-PUE3 275 −42.78 66.72 1.50
    Notes: Td,5%—5% thermal decomposition temperature; Tg—Glass transition temperature.
    下载: 导出CSV

    表  3  PEO-PUEs复合材料的力学性能

    Table  3.   Mechanical properties of PEO-PUEs composites

    SampleShore A hardnessTensile strength/MPaTear strength/MPaElongation at break/%
    PEO-PUE1 27±2 3.5±0.3 8.9±0.7 441±16
    PEO-PUE2 34±2 4.7±0.3 9.4±0.7 385±16
    PEO-PUE3 39±2 5.8±0.3 10.7±0.7 331±16
    下载: 导出CSV

    表  4  PEO-PUEs/Al和PEO-PUEs/Al*的峰值电流、键合时间和界面强度

    Table  4.   Peak current, bonding time and interface strength of PEO-PUEs/Al and PEO-PUEs/Al*

    SamplePeak
    current/mA
    Bonding
    time/s
    Tensile
    strength/MPa
    SamplePeak
    current/mA
    Bonding
    time/s
    Tensile
    strength/MPa
    PEO-PUE1/Al 10.4 77.8 0.85 PEO-PUE1/Al* 9.5 46.0 0.11
    PEO-PUE2/Al 13.7 86.0 1.09 PEO-PUE2/Al* 11.8 50.0 0.15
    PEO-PUE3/Al 15.3 93.8 1.26 PEO-PUE3/Al* 13.8 54.1 0.23
    下载: 导出CSV
  • [1] KNAPKIEWICZ P. Ultra-low temperature anodic bonding of silicon and borosilicate glass[J]. Semiconductor Science and Technology,2019,34(3):035005. doi: 10.1088/1361-6641/aafecc
    [2] HU L F, XUE Y Z, WANG H. Glass-Cu joining by anodic bonding and soldering with eutectic Sn-9Zn solder[J]. Journal of Alloys and Compounds,2019,789:558-566. doi: 10.1016/j.jallcom.2019.02.257
    [3] ADITI, GOPAL R. Fabrication of MEMS xylophone magnetometer by anodic bonding technique using SOI wafer[J]. Microsystem Technologies,2017,23(1):81-90. doi: 10.1007/s00542-016-2812-8
    [4] SZESZ E M, LEPIENSKI C M. Anodic bonding of titanium alloy with bioactive glass[J]. Journal of Non-Crystalline Solids,2017,471:19-27. doi: 10.1016/j.jnoncrysol.2017.04.038
    [5] WOETZEL S, IHRING A, KESSLER E, et al. Hermetic sealing of MEMS including lateral feedthroughs and room-temperature anodic bonding[J]. Journal of Micromechanics and Microengineering,2018,28(7):075013.
    [6] TANG J L, CAI C, MING X X, et al. Morphology and stress at silicon-glass interface in anodic bonding[J]. Applied Surface Science,2016,387:139-148. doi: 10.1016/j.apsusc.2016.06.076
    [7] DU C, LIU C R, YIN X. Polyethylene glycol-based solid polymer electrolytes: Encapsulation materials with excellent anodic bonding performance[J]. Journal of Inorganic and Organometallic Polymers and Materials,2017,27(5):1521-1525. doi: 10.1007/s10904-017-0612-y
    [8] DU C, LIU C R, YIN X. Effect of cooling mode on anodic bonding properties of solid polymer electrolytes[J]. Journal of Inorganic and Organometallic Polymers and Materials,2018,28(1):146-151. doi: 10.1007/s10904-017-0658-x
    [9] WU Y L, LI X F, ZHAO H C, et al. Pyrene-based hyperbranched porous polymers with doped Ir(piq)2(acac) red emitter for highly effcient white polymer light-emitting diodes[J]. Organic Electronics,2020,76:105487. doi: 10.1016/j.orgel.2019.105487
    [10] WEI X Z, GAO L, MIAO Y Q, et al. A new strategy for structuring white organic light-emitting diodes by combining complementary emissions in the same interface[J]. Journal of Materials Chemistry C,2020,8(8):2772-2779. doi: 10.1039/C9TC06198C
    [11] MIAO Y Q, WANG K X, ZHAO B, et al. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer[J]. Nanophotonics,2018,7(1):295-304. doi: 10.1515/nanoph-2017-0021
    [12] HU L, XUE Y, SHI F. Interfacial investigation and mechanical properties of glass-Al-glass anodic bonding process[J]. Journal of Micromechanics & Microengineering,2017,27:105004.
    [13] JOYCE R, SINGH K, VARGHESE S, et al. Effective cleaning process and its influence on surface roughness in anodic bonding for semiconductor device packaging[J]. Materials Science in Semiconductor Processing,2015,31:84-93. doi: 10.1016/j.mssp.2014.11.002
    [14] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of of the people’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [15] WANG H L, YU J T, FANG H G, et al. Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation[J]. Polymer,2018,137:1-12. doi: 10.1016/j.polymer.2017.12.067
    [16] HE W S, CUI Z L, LIU X C, et al. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries[J]. Electrochimica Acta,2017,225:151-159. doi: 10.1016/j.electacta.2016.12.113
    [17] 赵浩成, 张伟玄, 武钰铃, 等. 基于静电键合的聚醚型聚氨酯基固体电解质柔性封装材料[J]. 功能材料, 2019, 50(7):7040-7045. doi: 10.3969/j.issn.1001-9731.2019.07.008

    ZHAO H C, ZHANG W X, WU Y L, et al. Polyether-based polyurethane solid electrolyte flexible encapsulation material based on electrostatic bonding[J]. Journal of Functional Materials,2019,50(7):7040-7045(in Chinese). doi: 10.3969/j.issn.1001-9731.2019.07.008
    [18] ZHAO H C, ZHANG W X, YIN X, et al. Conductive polyurethane elastomer electrolyte (PUEE) materials for anodic bonding[J]. RSC Advances,2020,10(22):13267-13276. doi: 10.1039/C9RA10944G
    [19] DU C, LIU C R, YIN X, et al. Synthesis and bonding performance of conductive polymer containing rare earth oxides[J]. Journal of Inorganic and Organometallic Polymers and Materials,2018,28(3):746-750. doi: 10.1007/s10904-017-0713-7
    [20] FENG G, LI Z, XU X, et al. Glass-copper anodic bonding through activated Sn-0.6Al solder[J]. Journal of Materials Processing Technology,2018,254:108-113. doi: 10.1016/j.jmatprotec.2017.11.038
    [21] OPREA S, POTOLINCA V O, OPREA V. Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide[J]. European Polymer Journal,2016,83:161-172. doi: 10.1016/j.eurpolymj.2016.08.020
    [22] CAO L J, YANG M Y, WU D, et al. Biopolymer-chitosan based supramolecular hydrogels as solid-state electrolytes for electrochemical energy storage[J]. Chemical Communications,2017,53(10):1615-1618. doi: 10.1039/C6CC08658F
    [23] TAN L, DENG Y Y, CAO Q, et al. Gel electrolytes based on polyacrylonitrile/thermoplastic polyurethane/polystyrene for lithium-ion batteries[J]. Ionics,2019,25(8):3673-3682. doi: 10.1007/s11581-019-02940-7
    [24] MUNDINAMANI S. The choice of noble electrolyte for symmetric polyurethane-graphene composite supercapacitors[J]. International Journal of Hydrogen Energy,2019,44(21):11240-11246. doi: 10.1016/j.ijhydene.2019.02.164
    [25] BAO J J, QU X B, QI G Q, et al. Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries[J]. Solid State Ionics,2018,320:55-63. doi: 10.1016/j.ssi.2018.02.030
    [26] KHANDAN O, STARK D, CHANG A, et al. Wafer-scale titanium anodic bonding for microfluidic applications[J]. Sensors & Actuators B: Chemical,2014,205:244-248.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  865
  • HTML全文浏览量:  307
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 录用日期:  2020-05-05
  • 网络出版日期:  2020-05-19
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回