留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光超声二次谐波技术检测纤维增强树脂复合材料加固混凝土结构剥离损伤

许颖 郑倩 王帅

许颖, 郑倩, 王帅. 基于激光超声二次谐波技术检测纤维增强树脂复合材料加固混凝土结构剥离损伤[J]. 复合材料学报, 2021, 38(1): 255-267. doi: 10.13801/j.cnki.fhclxb.20200518.001
引用本文: 许颖, 郑倩, 王帅. 基于激光超声二次谐波技术检测纤维增强树脂复合材料加固混凝土结构剥离损伤[J]. 复合材料学报, 2021, 38(1): 255-267. doi: 10.13801/j.cnki.fhclxb.20200518.001
XU Ying, ZHENG Qian, WANG Shuai. Detection on debonding damage of fiber reinforced polymer composite strengthened concrete structure based on laser ultrasonic second harmonic generation technology[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 255-267. doi: 10.13801/j.cnki.fhclxb.20200518.001
Citation: XU Ying, ZHENG Qian, WANG Shuai. Detection on debonding damage of fiber reinforced polymer composite strengthened concrete structure based on laser ultrasonic second harmonic generation technology[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 255-267. doi: 10.13801/j.cnki.fhclxb.20200518.001

基于激光超声二次谐波技术检测纤维增强树脂复合材料加固混凝土结构剥离损伤

doi: 10.13801/j.cnki.fhclxb.20200518.001
基金项目: 国家自然科学基金面上项目(51778191)
详细信息
    通讯作者:

    许颖,博士,副教授,博士生导师,研究方向为FRP在土木工程中的应用、土木工程结构健康监测、光纤传感器、新型结构和新材料结构 E-mail:cexyx@hotmail.com

  • 中图分类号: TU332

Detection on debonding damage of fiber reinforced polymer composite strengthened concrete structure based on laser ultrasonic second harmonic generation technology

  • 摘要: 纤维增强树脂(FRP)复合材料加固混凝土结构的早期剥离损伤往往趋向于闭合状态,传统线性超声技术对这种剥离损伤不敏感。本文提出了基于连续激光激发窄带超声波技术结合非线性超声二次谐波法检测FRP复合材料加固混凝土剥离损伤的方法,该方法通过强度调制激光技术在加固结构的表面激励窄带超声表面波,在超声波的扰动下,依据弹簧模型的接触非线性理论,结构中的剥离分层损伤在界面处将产生开合效应,利用声学非线性二次谐波响应检测定位出剥离损伤位置。基于仿真和实验研究结果,验证了该方法对FRP复合材料加固混凝土结构早期剥离损伤检测具备可行性,实现FRP复合材料加固混凝土结构的非接触式、高灵敏度损伤检测。

     

  • 图  1  裂缝开合引起的高次谐波

    Figure  1.  Second harmonic wave generated by crack opening and closing

    H—Hight of concrete specimen; L—Length of concrete specimen; ω—Frequency of single frequency ultrasonic signal

    图  2  激光激励函数

    Figure  2.  Laser excitation function

    图  3  随机骨料模型

    Figure  3.  Random aggregate model

    图  4  纤维增强树脂(FRP)复合材料加固混凝土剥离损伤模型

    Figure  4.  Debonding damage model of fiber reinforced polymer (FRP) composite strengthened concrete

    图  5  FRP复合材料加固混凝土剥离损伤示意图

    Figure  5.  Debonding damage diagram of FRP strengthened concrete

    图  6  骨料和砂浆本构关系

    Figure  6.  Constitutive relation of aggregate and mortar

    fagg—Peak stress of aggregate; fmor—Peak stress of mortar; ε—Strain; εagg—Strain of aggregate; εmor—strain of mortar; εmor—Peak strain of mortar; σ—Stress

    图  7  网格划分

    Figure  7.  Meshing diagram

    图  8  激光作用中心点温度

    Figure  8.  Temperature at center of laser excitation

    图  9  激光激发超声波速度云图

    Figure  9.  Velocity contour of laser excited ultrasound

    图  10  1.0 mm FRP复合材料板加固混凝土剥离损伤的二次谐波响应

    Figure  10.  Second harmonic response of concrete debonding damage strengthened by 1.0 mm FRP composite plate

    图  11  0.5 mm FRP复合材料板剥离损伤表面超声非线性特征

    Figure  11.  Ultrasonic nonlinear characteristics of debonding damage surface of 0.5 mm FRP composite plate

    图  12  1.0 mm FRP复合材料板剥离损伤表面超声非线性特征

    Figure  12.  Ultrasonic nonlinear characteristics of debonding damage surface of 1.0 mm FRP composite plate

    图  13  碳纤维增强树脂(CFRP)复合材料加固混凝土人工剥离损伤试件

    Figure  13.  Carbon fiber reinforced polymer (CFRP) composite strengthened concrete artificial debonding damage specimens

    图  14  实验系统设计

    Figure  14.  Experimental system design

    图  15  压电超声实验系统

    Figure  15.  Piezoelectric ultrasonic experimental system

    图  16  激励点和接收点布置

    Figure  16.  Location of excitation and receiving points

    图  17  采集点的时频域信号

    Figure  17.  Time domain and frequency domain signal of receiving point

    图  18  FRP复合材料加固剥离损伤试件二次谐波法检测结果

    Figure  18.  Test results of second harmonic method for FRP composite strengthened debonding damage specimens

    表  1  粗骨料代表粒径级配及颗粒数

    Table  1.   Representative particle size grading and particle numbers of coarse aggregate

    Aggregate diameter d0/mmProbability of d0
    P (d<d0)
    Representative particle size/mmP(di)–P(di–1)Single particle area/mm2Number of representative particle
    5 0.333
    10 0.471 7.5 0.137 44.2 93
    15 0.572 12.5 0.102 122.7 25
    20 0.649 17.5 0.076 240.4 10
    25 0.695 22.5 0.046 397.4 4
    下载: 导出CSV

    表  2  材料的热物理性能

    Table  2.   Thermophysical properties of materials

    MaterialDensity/
    (kg·m−1)
    Specific heat
    capacity/
    (J(K·kg)−1)
    Coefficient of
    heat conduction/
    (W(K·m)−1)
    Concrete 2500 900 1.8
    FRP 1800 850 3.0
    下载: 导出CSV

    表  3  FRP复合材料板物理参数

    Table  3.   Physical properties of FRP composite plate

    Elasticity modulus E11/GPaElasticity modulus E22, E33/GPaPoisson’s ratio ν12, ν13Poisson’s ratio ν23
    135 8.5 0.3 0.34
    Shear modulus G11/GPa Shear modulus G22, G33/GPa Density $\rho $/ (kg·m−3) Coefficient of thermal expansion α/℃−1
    4.47 3.35 1560 10−5
    下载: 导出CSV

    表  4  骨料和砂浆力学参数

    Table  4.   Mechanical parameters of aggregate and mortar

    MaterialElasticity modulus/GPaPoisson’s ratioStrength (Compressive/tensile)/MPaUltimate compressive strain
    Aggregate 30 0.22 25/2.5 0.0033
    Mortar 50 0.15 80/8.0 0.0016
    下载: 导出CSV

    表  5  FRP复合材料板剥离损伤的相对非线性系数量化指标

    Table  5.   Quantitative index of relative nonlinear coefficient of debonding damage of FRP composite plate

    0.5 mm FRPSize 15 mm damageSize 24 mm damageSize 30 mm damage
    RuRdRuRdRuRd
    x/cm 35.5 51.5 132 146.5 229.5 249.5
    $\beta '$/cm−1 0.50 2.80 0.56 5.26 0.46 8.30
    $\beta {'_{\rm{d}}}/\beta {'_{\rm{u}}}$ 5.58 9.32 18.25
    1.0 mm FRP Size 15 mm damage Size 24 mm damage Size 30 mm damage
    Ru Rd Ru Rd Ru Rd
    x/cm 24.0 47.0 131.5 150.0 227.0 252.5
    $\beta '$/cm−1 17.53 27.26 2.43 92.42 4.29 65.49
    $\beta {'_{\rm{d}}}/\beta {'_{\rm{u}}}$ 1.56 38.02 15.28
    Notes: β′—Relative nonlinear coefficient; βd/βu—Damage quantification index; Ru—Undamaged area; Rd—Damaged area.
    下载: 导出CSV

    表  6  实验检测剥离损伤的相对非线性系数量化指标

    Table  6.   Quantitative index of relative nonlinear coefficient of debonding damage by experiment

    Specimen 1Size 15 mm damageSize 24 mm damageSize 30 mm damage
    RuRdRuRdRuRd
    x/cm 8.5 10.0 14.5 16.0 22.0 25.0
    $\beta '$/cm−1 24.22 60.65 15.17 51.34 32.25 88.55
    $\beta {'_{\rm{d}}}/\beta {'_{\rm{u}}}$ 2.50 3.38 2.75
    Specimen 2 Size 15 mm damage Size 24 mm damage Size 30 mm damage
    Ru Rd Ru Rd Ru Rd
    x/cm 8.5 10.0 14.5 16.0 22.0 23.5
    $\beta '$/cm−1 43.50 216.27 143.31 99.00 107.44 179.91
    $\beta {'_{\rm{d}}}/\beta {'_{\rm{u}}}$ 4.97 0.69 1.67
    Specimen 3 Size 15 mm damage Size 24 mm damage Size 30 mm damage
    Ru Rd Ru Rd Ru Rd
    x/cm 8.5 10.0 14.5 17.5 22.0 25.0
    $\beta '$/cm−1 62.74 62.20 78.32 193.91 35.57 225.18
    $\beta {'_{\rm{d}}}/\beta {'_{\rm{u}}}$ 0.99 2.48 6.33
    下载: 导出CSV
  • [1] ANTONOPOULOS C P, TRIANTAFILLOU T C. Experimental investigation of FRP-strengthened RC beam-column joints[J]. Journal of Composites for Construction,2003,7(1):39-49. doi: 10.1061/(ASCE)1090-0268(2003)7:1(39)
    [2] EL-GHANDOUR A. Experimental and analytical investigation of CFRP flexural and shear strengthening efficiencies of RC beams[J]. Construction & Building Materials,2011,25(3):1419-1429.
    [3] KELLER T. Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings[J]. Progress in Structural Engineering and Materials,2001,3(2):132-140. doi: 10.1002/pse.66
    [4] 李炳奇, 周月霞. 纤维复合材料加固混凝土结构的研究进展[J]. 水利与建筑工程学报, 2016, 14(1):85-90. doi: 10.3969/j.issn.1672-1144.2016.01.016

    LI Bingqi, ZHOU Yuexia. Research process of the concrete structure strengthened with fiber composite polymer[J]. Journal of Water Resources and Architectural Engineering,2016,14(1):85-90(in Chinese). doi: 10.3969/j.issn.1672-1144.2016.01.016
    [5] SMITH S T, TENG J G. FRP-strengthened RC beams Ⅰ: Review of debonding strength models[J]. Engineering Structures,2002,24(4):385-395. doi: 10.1016/S0141-0296(01)00105-5
    [6] MUKHOPADHYAYA P, SWAMY N. Interface shear stress: A new design criterion for plate debonding[J]. Journal of Composites for Construction,2001,5(1):35-43. doi: 10.1061/(ASCE)1090-0268(2001)5:1(35)
    [7] SEBASTIAN W M. Significance of midspan debonding failure in FRP-plated concrete beams[J]. Journal of Structural Engineering,2001,127(7):792-798. doi: 10.1061/(ASCE)0733-9445(2001)127:7(792)
    [8] CHEN G M, CHEN J F, TENG J G. Behaviour of FRP-to-concrete interfaces between two adjacent cracks: A numerical investigation on the effect of bondline damage[J]. Construction and Building Materials,2012,28(1):584-591. doi: 10.1016/j.conbuildmat.2011.08.074
    [9] TENG J G, SMITH S T, YAO J, et al. Intermediate crack-induced debonding in RC beams and slabs[J]. Construction and Building Materials,2003,17(6-7):447-462. doi: 10.1016/S0950-0618(03)00043-6
    [10] BUYUKOZTURK O, GUNES O, KARACA E. Progress on understanding debonding problems in reinforced concrete and steel members strengthened using FRP composites[J]. Construction and Building Materials,2004,18(1):9-19. doi: 10.1016/S0950-0618(03)00094-1
    [11] 刘怀喜, 张恒, 马润香. 复合材料无损检测方法[J]. 无损检测, 2003, 25(12):631-634. doi: 10.3969/j.issn.1000-6656.2003.12.010

    LIU Huaixi, ZHANG Heng, MA Runxiang. Nondestructive testing techniques for composite materials[J]. Nondestructive Testing,2003,25(12):631-634(in Chinese). doi: 10.3969/j.issn.1000-6656.2003.12.010
    [12] 李士伟, 林维正, 李少波, 等. 混凝土损伤的超声检测试验研究[J]. 无损检测, 2004, 26(3):127-141. doi: 10.3969/j.issn.1000-6656.2004.03.006

    LI Shiwei, LIN Weizheng, LI Shaobo, et al. Test research on ultrasonic testing of concrete damage[J]. Nondestructive Testing,2004,26(3):127-141(in Chinese). doi: 10.3969/j.issn.1000-6656.2004.03.006
    [13] NAGY P B. Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics,1998,36(1):375-381.
    [14] 张晓春, 陈立军. 固体中激光超声的机理及应用研究[J]. 传感器与微系统, 1999, 18(4):15-16. doi: 10.3969/j.issn.1000-9787.1999.04.007

    ZHANG Xiaochun, CHEN Lijun. Study on principle and application of laser-generated ultrasonic in solid[J]. Transducer and Microsystem Technologies,1999,18(4):15-16(in Chinese). doi: 10.3969/j.issn.1000-9787.1999.04.007
    [15] MCCANN D M, FORDE M C. Review of NDT methods in the assessment of concrete and masonry structures[J]. NDT & E International,2001,34(2):71-84.
    [16] 田玉滨, 莫青城, 杜文淼, 等. 基于非线性超声技术损伤钢筋混凝土无损检测的适用性研究[J]. 西安建筑科技大学学报: 自然科学版, 2017, 49(2):192-199.

    TIAN Yubin, MO Qingcheng, DU Wenmiao, et al. Research of applicability of non-destructive testing for damaged reinforced concrete basd on nonlinear ultrasonic technology[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition),2017,49(2):192-199(in Chinese).
    [17] DELRUE S, ABEELE K V B. Three-dimensional finite element simulation of closed delaminations in composite materials[J]. Ultrasonics,2012,52(2):315-324. doi: 10.1016/j.ultras.2011.09.001
    [18] 周正干, 刘斯明. 非线性无损检测技术的研究、应用和发展[J]. 机械工程学报, 2011, 47(8):2-11. doi: 10.3901/JME.2011.08.002

    ZHOU Zhenggan, LIU Siming. Nonlinear ultrasonic techniques used in nondestructive testing: A review[J]. Journal of Mechanical Engineering,2011,47(8):2-11(in Chinese). doi: 10.3901/JME.2011.08.002
    [19] DAVIES S J, EDWARDS C, TAYLOR G S, et al. Laser-generated ultrasound: Its properties, mechanisms and multifarious applications[J]. Journal of Physics D: Applied Physics,1993,26(3):329-348. doi: 10.1088/0022-3727/26/3/001
    [20] WOODWARD C B, STAUFFER J D. Nonlinear ultrasonic testing with resonant and pulse velocity parameters for early damage in concrete[J]. ACI Materials Journal,2005,102(2):118-121.
    [21] ROE S E, WOODWARD C, CRAMER M J. Nonlinear ultrasonic testing on a laboratory concrete bridge deck[J]. AIP Conference Proceedings, 2007, 894(1): 1429-1434.
    [22] LEŚNICKI K J, KIM J Y, KURTIS K E, et al. Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique[J]. NDT & E International,2011,44(8):721-727.
    [23] KIM G, IN C W, KIM J Y, et al. Air-coupled detection of nonlinear rayleigh surface waves in concrete: Application to microcracking detection[J]. NDT & E International,2014,67(8):64-70.
    [24] DONSKOY D, SUTIN A, EKIMOV A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing[J]. NDT & E International,2001,34(4):231-238.
    [25] 许颖, 刘志安, 邵长军. FRP加固结构界面损伤的声-光纤检测数值模拟及实验[J]. 复合材料学报, 2014, 31(6):1588-1596.

    XU Ying, LIU Zhian, SHAO Changjun. Numerical simulation and experiment for acoustic-optical fiber based detection of interfacial damage in FRP-retrofitted structures[J]. Acta Materiae Compositae Sinica,2014,31(6):1588-1596(in Chinese).
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  927
  • HTML全文浏览量:  412
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 录用日期:  2020-05-04
  • 网络出版日期:  2020-05-18
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回