留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制

龚新怀 李明春 杨坤 吴珠海 王兆礼 吕橄 吴振增

龚新怀, 李明春, 杨坤, 等. 纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制[J]. 复合材料学报, 2021, 38(2): 424-438. doi: 10.13801/j.cnki.fhclxb.20200507.002
引用本文: 龚新怀, 李明春, 杨坤, 等. 纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制[J]. 复合材料学报, 2021, 38(2): 424-438. doi: 10.13801/j.cnki.fhclxb.20200507.002
GONG Xinhuai, LI Mingchun, YANG Kun, et al. Preparation of nano-Fe3O4@tea waste/calcium alginate magnetic composited bead and it’s adsorption characteristics and mechanisms for methylene blue from aqueous solution[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 424-438. doi: 10.13801/j.cnki.fhclxb.20200507.002
Citation: GONG Xinhuai, LI Mingchun, YANG Kun, et al. Preparation of nano-Fe3O4@tea waste/calcium alginate magnetic composited bead and it’s adsorption characteristics and mechanisms for methylene blue from aqueous solution[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 424-438. doi: 10.13801/j.cnki.fhclxb.20200507.002

纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制

doi: 10.13801/j.cnki.fhclxb.20200507.002
基金项目: 福建省自然科学基金(2018J01445);福建省高校杰出青年科研人才计划(闽科教[2018]47号);福建省中青年教师教育科研项目(JAT170594;JT180555);武夷学院引进人才科研项目(YJ201810);福建省生态产业绿色技术重点实验室项目(WYKF2018-5)
详细信息
    通讯作者:

    龚新怀,博士,副教授,研究方向为生物质高值化利用与高分子复合材料 Email:wyu_gxh@163.com

  • 中图分类号: TQ424.3;X712;TB332

Preparation of nano-Fe3O4@tea waste/calcium alginate magnetic composited bead and it’s adsorption characteristics and mechanisms for methylene blue from aqueous solution

  • 摘要: 采用离子共沉淀技术在茶渣(Tea waste, TW)表面沉积纳米Fe3O4粒子(TW@nano-Fe3O4),用溶胶凝胶法制备茶渣@纳米Fe3O4/海藻酸钙(TW@nano-Fe3O4/CA)磁性复合微球,通过SEM、XPS、XRD、振动样品磁强计(VSM)及万能试验机对材料结构和性能进行了表征与测试,并研究了其对水溶液中亚甲基蓝(Methylene blue, MB)的吸附性能与机制。结果表明,TW@nano-Fe3O4/CA复合微球磁性响应明显,粒径为1.2~1.7 mm。微球表面粗糙、褶皱,内部为疏松多孔道结构。随TW@nano-Fe3O4含量增加,微球粒径增加,磁响应增强,但对MB的吸附量缓慢下降;TW@nano-Fe3O4/CA微球对MB的吸附动力学数据与准二级动力学方程拟合较好,等温吸附过程符合Langmuir模型,对MB的吸附过程是自发性和熵减小的放热过程。在303 K下,质量配比为TW@nano-Fe3O4∶CA=4∶1的复合微球对MB的Langmuir最大吸附量为272.5 mg·g−1,比TW提高86.7%,并具有良好的再生与循环使用性能。

     

  • 图  1  茶渣(TW)及TW@nano-Fe3O4的SEM图像

    Figure  1.  SEM images of tea waste (TW) and TW@nano-Fe3O4

    图  2  TW及TW@nano-Fe3O4的XPS图谱

    Figure  2.  XPS spectra of TW and TW@nano-Fe3O4

    图  3  海藻酸钙微球(CA)和TW@nano-Fe3O4/CA(4∶1)复合微球的SEM图像

    Figure  3.  SEM images of the calcium algnate(CA) and TW@nano-Fe3O4/CA(4∶1) composite beads

    图  4  TW@nano-Fe3O4/CA(4∶1)复合微球的XRD图谱

    Figure  4.  XRD spectra of TW@nano-Fe3O4/CA(4∶1) composited beads

    图  5  TW@nano-Fe3O4/CA(4∶1)复合微球粒径分布

    Figure  5.  Size distribution of TW@nano-Fe3O4/CA(4∶1) composited beads

    图  6  TW和TW@nano-Fe3O4的磁性效果对比

    Figure  6.  Photographs of TW andTW@nano-Fe3O4 attracted by a magnet

    图  7  TW@nano-Fe3O4/CA复合微球的磁性效果图

    Figure  7.  Photographs of TW@nano-Fe3O4/CA beads attracted by a magnet

    图  8  TW@nano-Fe3O4/CA(4∶1)复合微球的磁化曲线

    Figure  8.  Magnetization curves of TW@nano-Fe3O4/CA(4∶1)

    图  9  TW@nano-Fe3O4质量比对复合微球吸附亚甲基蓝(MB)效果影响

    Figure  9.  Effects of TW@nano-Fe3O4 mass ratio on the adsorption capacity of methylene blue (MB) onto the beads

    图  10  pH对TW@nano-Fe3O4/CA(4∶1)复合微球吸附MB效果的影响

    Figure  10.  Effects of pH on the adsorption capacity of MB onto TW@nano-Fe3O4/CA(4∶1) beads

    图  11  接触时间对TW@nano-Fe3O4和TW@nano-Fe3O4/CA(4∶1)复合微球吸附MB效果的影响

    Figure  11.  Effects of time on adsorption capacity of MB onto TW@nano-Fe3O4 and TW@nano-Fe3O4/CA(4∶1) beads

    图  12  TW@nano-Fe3O4/CA(4∶1)复合微球吸附MB的动力学方程拟合曲线

    Figure  12.  Kinetic fitting curves of adsorption data of MB onto TW@nano-Fe3O4/CA(4∶1) beads

    图  13  TW@nano-Fe3O4和nTW@nano-Fe3O4/CA(4∶1)复合微球对MB的等温吸附曲线

    Figure  13.  Adsorption isothermal curves of TW@nano-Fe3O4 and TW@nano-Fe3O4/CA(4∶1) beads

    图  14  TW、TW@nano-Fe3O4及nTW@nano-Fe3O4/CA(4∶1)复合微球对MB的等温吸附模型拟合曲线

    Figure  14.  Langmuir model fitting curves for TW, TW@nano-Fe3O4, TW@nano-Fe3O4/CA(4∶1) beads, Freundlich model fitting curves for TW@nano-Fe3O4/CA(4∶1) beads

    图  15  TW、TW@nano-Fe3O4及TW@nano-Fe3O4/CA(4∶1)复合微吸附MB热力学拟合曲线

    Figure  15.  Thermodynamic fitting curves of adsorption data of MB onto TW, TW@nano-Fe3O4 and TW@nano-Fe3O4/CA(4∶1)

    图  16  TW@nano-Fe3O4/CA(4∶1)复合微球再生与吸附循环使用前后外观形态

    Figure  16.  Appearances of the TW@nano-Fe3O4/CA(4∶1) beads during the regeneration and recycling utiliziation process

    图  17  TW@nano-Fe3O4/CA(4∶1)复合微球的压缩应力-应变曲线

    Figure  17.  Stress-strain curves of compression test of the TW@nano-Fe3O4/CA(4∶1) beads

    图  18  TW@nano-Fe3O4/CA(4∶1)复合微球的循环使用

    Figure  18.  Recycling utilization of TW@nano-Fe3O4/CA(4∶1)

    表  1  TW@nano-Fe3O4/CA(4∶1)复合微球吸附MB的动力学模型拟合参数(C0=200 mg·L−1)

    Table  1.   Parameters of kinetic adsorption models for MB adsorption onto TW@nano-Fe3O4/CA(4∶1) beads ( C0=200 mg·L−1)

    ModelParameterValue
    Qe(exp)/(mg·g−1) 171.3
    Pesudo-
    first-
    order
    k1/min−1 8.0×10−3
    Qe(cal)/(mg·g−1) 123.8
    R2 0.9542
    Pesudo-
    second-
    order
    k2/(g·mg−1·min−1) 1.0×10−4
    Qe(cal)/(mg·g−1) 185.2
    R2 0.9985
    Notes: k1, k2—Psudo-first-order kinetic constant and Psudo-second-order kinetic constant, respectively; Qe(cal)—Calculation amount of MB removed per unit mass of adsorbent; Qe(exp)—Experimental amount of MB removed per unit mass of adsorbent.
    下载: 导出CSV

    表  2  TW、TW@nano-Fe3O4及TW@nano-Fe3O4/CA(4∶1)对MB的吸附等温式拟合结果

    Table  2.   Isothermal parameters for the adsorption of MB onto TW, TW@nano-Fe3O4 and TW@nano-Fe3O4/CA(4∶1) beads

    AdsorbentModelParameterT/K
    303313323
    TW Langmuir Qm/(mg·g−1) 146.0 145.3 143.3
    KL×10−2/(L·mg−1) 5.2 4.4 4.2
    R2 0.9995 0.9992 0.9989
    TW@nano-Fe3O4 Langmuir Qm/(mg·g−1) 160.5 154.8 152.0
    KL×10−2/(L·mg−1) 9.1 8.1 7.4
    R2 0.9993 0.9996 0.9998
    TW@nano-Fe3O4/CA Langmuir Qm/(mg·g−1) 272.5 266.0 261.8
    KL×10−2/(L·mg−1) 5.1 4.8 4.2
    R2 0.9949 0.9971 0.9952
    Fredudlich KF/(L·mg−1) 26.0 25.6 24.3
    n 2.0 2.1 2.1
    R2 0.9089 0.9482 0.9718
    Notes: Qm—Langmuir adsorption maximum; KL—Langmuir coefficient of distribution of the adsorption; KF—Freundlich coefficient of distribution of the adsorption; n—Empirical constant related to temperature and system.
    下载: 导出CSV

    表  3  TW、TW@nano-Fe3O4及TW@nano-Fe3O4/CA(4∶1)复合微球吸附MB的热力学参数分析

    Table  3.   Values of thermodynamic parameters for the adsorption of MB onto TW, TW@nano-Fe3O4 andTW@nano-Fe3O4/CA(4∶1) beads

    AdsorbentT/KGθ/(kJ·mol−1)Hθ/(kJ·mol−1)Sθ/(J·mol−1·K−1)R2
    TW 303 −0.9
    313 −0.8 −4.4 −11.7 0.9943
    323 −0.7
    TW@nano-Fe3O4 303 −1.6
    313 −1.5 −5.9 −13.9 0.9960
    323 −1.4
    TW@nano-Fe3O4/CA
    beads
    303 −4.8
    313 −4.4 −20.5 −51.7 0.9952
    323 −3.8
    Notes: ∆Gθ—Gibbs free energy variation of the adsorption process; ∆Hθ—Enthalpy change of the adsorption process; ∆Sθ—Entropy change of the adsorption process.; R2—Linear correlation coefficient.
    下载: 导出CSV

    表  4  不同处理方法后TW@nano-Fe3O4/CA(4∶1)复合微球的力学性能

    Table  4.   Mechanical properties of TW@nano-Fe3O4/CA(4∶1) composites with different treatments

    TW@nano-Fe3O4/CA beadsCompressive strength/MPaCompression modulus/MPa
    Before adsorption of MB 6.2±0.5 41.1±4.7
    After adsorption of MB 6.5±0.4 42.2±4.6
    Regeneration for 2 times 6.3±0.3 44.7±3.4
    Regeneration for 4 times 6.2±0.2 42.2±3.1
    下载: 导出CSV
  • [1] DAWOOD S, SEN T K, PHAN C. Performance and dynamic modelling of biochar and kaolin packed bed adsorption column for aqueous phase methylene blue(MB) dye removal[J]. Environmental Technology,2019,40(28):3762-3772. doi: 10.1080/09593330.2018.1491065
    [2] LIU P, ZHANG L. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents[J]. Separation & Purification Technology,2007,58(1):32-39.
    [3] NASUHA N, HAMEED B H, DIN A T. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue[J]. Journal of Hazardous Materials,2010,175(1-3):126-132. doi: 10.1016/j.jhazmat.2009.09.138
    [4] DIAS J M, ALVIM-FERRAZ M C, ALMEIDA M F, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review[J]. Journal of Environmental Management,2007,85(4):833-846. doi: 10.1016/j.jenvman.2007.07.031
    [5] MONDAL S. Methods of dye removal from dye house effluents: An overview[J]. Environmental Engineering Science,2008,25(3):383-396. doi: 10.1089/ees.2007.0049
    [6] 龚新怀, 陈良壁. 茶粉/聚丙烯复合材料自然老化性能[J]. 复合材料学报, 2016, 33(7):1437-1445.

    GONG X H, CHEN L B. Performances of tea dust/polypropylene composites under natural weathering[J]. Acta Materiae Compositae Sinica,2016,33(7):1437-1445(in Chinese).
    [7] 许咏梅, 芦炜杰, 吕威雄. 中国茶叶出口贸易对中国茶产业发展影响的实证分析[J]. 茶叶, 2019, 45(4):185-192. doi: 10.3969/j.issn.0577-8921.2019.04.002

    XU Y M, LU W J, LV W X. An empirical analysis of the impact of China′s tea export trade on the development of China’s tea industry[J]. Journal of Tea,2019,45(4):185-192(in Chinese). doi: 10.3969/j.issn.0577-8921.2019.04.002
    [8] 谢月琴, 罗君谊, 陈婷, 等. 茶渣资源再利用研究概况[J]. 中国农学通报, 2019, 35(33):141-145. doi: 10.11924/j.issn.1000-6850.casb18060083

    XIE Y Q, LUO J Y, CHEN T, et al. Reuse of tea residue resources: A review[J]. Chinese Agricultural Science Bulletin,2019,35(33):141-145(in Chinese). doi: 10.11924/j.issn.1000-6850.casb18060083
    [9] FOROUGHA-DAHR M, ABOLGHASEMI H, ESMAILI M, et al. Adsorption characteristics of congo red from aqueous solution onto tea waste[J]. Chemical Engineering Communications,2015,202(2):181-193. doi: 10.1080/00986445.2013.836633
    [10] BABAEI A A, KHATAEE A, AHMADPOUR E, et al. Optimization of cationic dye adsorption on activated spent tea: Equilibrium, kinetics, thermodynamic and artificial neural network modeling[J]. Korean Journal of Chemical Engineering,2016,33(4):1352-1361. doi: 10.1007/s11814-014-0334-6
    [11] ZHANG Y, LI X L, LI Y F. Influence of solution chemistry on heavy metals removal by bioadsorbent tea waste modified by poly (vinyl alcohol)[J]. Desalination & Water Treatment,2015,53(8):2134-2143.
    [12] ROCHER V, BEE A, SIAUGUE J M, et al. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin[J]. Journal of Hazardous Materials,2010,178(1-3):434-439. doi: 10.1016/j.jhazmat.2010.01.100
    [13] AUTA M, HAMEED B H. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes[J]. Colloids and Surfaces B: Biointerfaces,2013,105:199-206. doi: 10.1016/j.colsurfb.2012.12.021
    [14] CAI H M, CHEN G J, PENG C Y, et al. Enhanced removal of fluoride by tea waste supported hydrous aluminium oxide nanoparticles: Anionic polyacrylamide mediated aluminium assembly and adsorption mechanism[J]. RSC Advances,2015,5(37):29266-29275. doi: 10.1039/C5RA01560J
    [15] ZHANG Y, LI X L, LI Y F. Influence of solution chemistry on heavy metals removal by bioadsorbent tea waste modified by poly (vinyl alcohol)[J]. Desalination and Water Treatment,2015,53(8):2134-2143. doi: 10.1080/19443994.2013.861775
    [16] ŠILLEROVA H, KOMAREK M, LIU C. Biosorbent encapsulation in calcium alginate: Effects of process variables on Cr(VI) removal from solutions[J]. International Journal of Biological Macromolecules,2015,80:260-270. doi: 10.1016/j.ijbiomac.2015.06.032
    [17] WANG B, GAO B, ZIMMERMAN A R, et al. Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties[J]. Journal of Environmental Mangement,2018,209(1):105-111.
    [18] 于长江, 王苗, 董心雨, 等. 海藻酸钙@Fe3O4/生物碳磁性复合材料的制备及其对Co(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2018, 35(6):1549-1557.

    YU C J, WANG M, DONG X Y, et al. Preparation and characterization of calcium alginate@Fe3O4/biochar magnetic microsphere and its adso[J]. Acta Materiae Compositae Sinica,2018,35(6):1549-1557(in Chinese).
    [19] ROCHER V, SIAUGUE J M, CABUIL V, et al. Removal of organic dyes by magnetic alginate beads[J]. Water Research,2008,42(4):1290-1298.
    [20] 陈铧耀, 周新华, 周红军, 等. 毒死蜱/壳聚糖改性凹凸棒土/海藻酸钠微球的制备与缓释性能[J]. 化工进展, 2017, 36(3):1033-1040.

    CHEN H Y, ZHOU X H, ZHOU H J, et al. Preparation and slow-release performance of chlorpyrifos/chitosan modified attapulgite/ sodium alginate microspheres[J]. Chemical industry and Engineering Progress,2017,36(3):1033-1040(in Chinese).
    [21] 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7):2641-2652.

    HU P, CHANG K, CHEN Z Y, et al. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J]. Journal of Chemical Industry and Engineering,2017,68(7):2641-2652(in Chinese).
    [22] 邢敏, 雷西萍, 韩丁, 等. Fe3O4/高岭土磁性复合材料对Cu2+的吸附性能[J]. 复合材料学报, 2019, 36(9):2204-2211.

    XING M, LEI X P, HAN D, et al. Adsorption properties of Fe3O4/Kaolin magnetic composites for Cu2+[J]. Acta Materiae Compositae Sinica,2019,36(9):2204-2211(in Chinese).
    [23] PANNERSELVAM P, MORAD N, TAN K A. Magnetic nanoparticle(Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution[J]. Journal of Hazardous Materials,2011,186(1):160-168. doi: 10.1016/j.jhazmat.2010.10.102
    [24] 龚新怀, 辛梅华, 李明春, 等. 磁性响应茶渣制备及其对水溶液中亚甲基蓝的吸附[J]. 化工进展, 2019, 38(2):1113-1121.

    GONG X H, XIN M H, LI M C, et al. Preparation of magnetically responsive tea waste and it's adsorption of methylene blue from aqueous[J]. Chemical Industry and Engineering Progress,2019,38(2):1113-1121(in Chinese).
    [25] ANNADURAI G, JUANG R S, LE D J, et al. Factorial design analysis for adsorption of dye on activated carbon beads incorporated with calcium alginate[J]. Advances in Environmental Research,2002,6(2):191-198. doi: 10.1016/S1093-0191(01)00050-8
    [26] ARAVINDHAN R, FATHIMA N N, RAO J R, et al. Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2007,299(1-3):232-238.
    [27] MADRAKIAN T, AFKHAMI A, AHMADI M. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2012,99:102-109. doi: 10.1016/j.saa.2012.09.025
    [28] GOSWAMI M, BORAH L, MAHANTA D, et al. Equilibrium modeling, kinetic and thermodynamic studies on the adsorption of Cr(VI) using activated carbon derived from matured tea leaves[J]. Journal of Porous Materials,2014,21(6):1025-1034. doi: 10.1007/s10934-014-9852-1
    [29] 姚时, 张鸣帅, 李林璇, 等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1):96-107. doi: 10.7524/j.issn.0254-6108.2017050401

    YAO S, ZHANG M S, LI L X, et al. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Cheistry,2018,37(1):96-107(in Chinese). doi: 10.7524/j.issn.0254-6108.2017050401
    [30] LIN Y B, FUGETSU B, TERUI N, et al. Removal of organic compounds by alginate gel beads with entrapped activated carbon[J]. Journal of Hazardous Materials,2005,120(1-3):237-241. doi: 10.1016/j.jhazmat.2005.01.010
    [31] ÜNLU N, ERSOZ M. Removal of heavy metal ions by using dithiocarbamated sporopollenin[J]. Separation & Purification Technology,2007,52(3):461-469.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  1435
  • HTML全文浏览量:  459
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-17
  • 录用日期:  2020-04-15
  • 网络出版日期:  2020-05-07
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回