留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热塑性树脂基复合材料用碳纤维上浆剂研究进展

周典瑞 高亮 霍红宇 张宝艳

周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37(8): 1785-1795 doi:  10.13801/j.cnki.fhclxb.20200507.001
引用本文: 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37(8): 1785-1795 doi:  10.13801/j.cnki.fhclxb.20200507.001
Dianrui ZHOU, Liang GAO, Hongyu HUO, Baoyan ZHANG. Research progress of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1785-1795. doi: 10.13801/j.cnki.fhclxb.20200507.001
Citation: Dianrui ZHOU, Liang GAO, Hongyu HUO, Baoyan ZHANG. Research progress of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1785-1795. doi: 10.13801/j.cnki.fhclxb.20200507.001

热塑性树脂基复合材料用碳纤维上浆剂研究进展

doi: 10.13801/j.cnki.fhclxb.20200507.001
基金项目: 先进复合材料国防科技重点实验室基金 (61429040106)
详细信息
    通讯作者:

    张宝艳,博士,研究员,研究方向为先进树脂基复合材料 E-mail:zhangbaoyan0916@126.com

  • 中图分类号: TB332

Research progress of carbon fiber sizing agents for thermoplastic composites

  • 摘要: 与高性能热塑性树脂不匹配、耐热性偏低的传统上浆剂越发难以满足热塑性树脂基复合材料快速发展与应用的需求,开发面向热塑性树脂基复合材料的碳纤维上浆剂具有重要意义。本文对上浆剂的主要作用效果、上浆剂与增强材料和基体树脂间的相互作用、热塑性树脂基复合材料用碳纤维上浆剂的主要特点进行了概述;对聚酰胺、聚氨酯、聚芳醚、聚酰亚胺及其他类型上浆剂的研究进展进行了重点论述,结合各体系的性能特点和主要问题,梳理了不同热塑性树脂基复合材料用碳纤维上浆剂的改性途径及近年来在各大生产企业中的研发应用情况,分析和阐明了各自的作用机制与发展现状,对热塑性树脂基复合材料用碳纤维上浆剂的未来趋势进行了展望,并给出了发展建议。
  • 图  1  聚氨酯(PU)上浆剂的界面强化机制示意图[39]

    PC—Polycarbonate

    Figure  1.  Schematic diagram of interface strengthening mechanism of polyurethane(PU) sizing agent[39]

    图  2  杂化上浆剂在湿热处理前后对界面的强化机制示意图[42]

    Figure  2.  Schematic diagram of hybrid sizing agents strengthening mechanisms before and after hydrothermal treatment[42]

    CF—Carbon fiber

    图  3  磺酸基与CF表面基团间的相互作用[52]

    PEEK—Polyether-ether-ketone

    Figure  3.  Interactions between sulfonic groups and active groups on the surface of CF[52]

    图  4  杂化上浆剂的界面强化机制示意图[21]

    Figure  4.  Schematic diagram of interface enhancement mechanisms of hybrid sizing agent[21]

    图  5  混合上浆剂与热塑性树脂间的相互作用示意图[24]

    PEI—Polyetherimide;MWCNT—Multiwalled carbon nanotube

    Figure  5.  Schematic diagram of interactions between thermoplastic resin and hybrid sizing agent[24]

    图  6  水性聚酰胺酸(PAA)上浆剂的制备流程[67]

    Figure  6.  Preparation process of solvent-free polyamic acid(PAA) sizing agent[67]

    图  7  CF/聚醚醚酮(PEEK)复合材料断口形貌[76]

    Figure  7.  Morphologies of the CF/polyether ether ketone(PEEK) composite rupture faces[76]

  • [1] SU Y S, ZHANG D, GONG X L, et al. Mechanical behavior in bending deformation of thermoplastic composite laminates with different stacking sequences[J]. Journal of Composite Materials,2015,50(8):1037-1048.
    [2] BORIA S, SCATTINA A, BELINGARDI G. Impact behavior of a fully thermoplastic composite[J]. Composite Structures,2017,167:63-75. doi:  10.1016/j.compstruct.2017.01.083
    [3] LU K, SHANKAR K. Wrinkling behavior of a woven thermoplastic composite material[J]. Materials Science Forum,2017,893:26-30. doi:  10.4028/www.scientific.net/MSF.893.26
    [4] 石峰晖, 代志双, 张宝艳. 碳纤维表面性质分析及其对复合材料界面性能的影响[J]. 航空材料学报, 2010, 30(3):43-47. doi:  10.3969/j.issn.1005-5053.2010.3.010

    SHI F H, DAI Z S, ZHANG B Y. Characterization of surface properties of carbon fibers and interfacial properties of carbon fiber reinforced matrix composites[J]. Journal of Aeronautical Materials,2010,30(3):43-47(in Chinese). doi:  10.3969/j.issn.1005-5053.2010.3.010
    [5] WU Z J, CUI H Y, CHEN L, et al. Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent[J]. Composites Science and Technology,2018,164:195-203. doi:  10.1016/j.compscitech.2018.05.051
    [6] DAI Z S, ZHANG B Y, SHI F H, et al. Chemical interaction between carbon fibers and surface sizing[J]. Journal of Applied Polymer Science,2012,124(3):2127-2132. doi:  10.1002/app.35226
    [7] GAMZE KARSLI N, OZKAN C, AYTAC A, et al. Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6, 6 composites[J]. Polymer Composites,2013,34(10):1583-1590. doi:  10.1002/pc.22556
    [8] 鲁佳腾, 颜春, 徐海兵, 等. 热塑性碳纤维上浆剂的研究进展[J]. 玻璃钢/复合材料, 2017(6):94-99. doi:  10.3969/j.issn.1003-0999.2017.06.017

    LU J T, YAN C, XU H B, et al. Research progress on thermoplastic sizing agent for carbon fibers[J]. Fiber Reinforced Plastics/Composites,2017(6):94-99(in Chinese). doi:  10.3969/j.issn.1003-0999.2017.06.017
    [9] 张宝艳. 先进复合材料界面技术[M]. 北京: 航空工业出版社, 2017.

    ZHANG B Y. Interfacial technology of advanced composites[M]. Beijing: Aviation Industry Press, 2017(in Chinese).
    [10] 张凤翻. 先进热塑性树脂预浸料用原材料[J]. 高科技纤维与应用, 2014, 39(3):1-6. doi:  10.3969/j.issn.1007-9815.2014.03.001

    ZHANG F F. Raw materials for advanced thermoplastic resin prepreg[J]. Hi-Tech Fiber <italic>&</italic> Application,2014,39(3):1-6(in Chinese). doi:  10.3969/j.issn.1007-9815.2014.03.001
    [11] 李鹏, 季春晓, 刘瑞超, 等. 国内碳纤维上浆剂技术专利分析[J]. 石油化工技术与经济, 2018, 34(1):55-61. doi:  10.3969/j.issn.1674-1099.2018.01.014

    LI P, JI C X, LIU R C, et al. Study on domestic patent application of carbon fibers sizing[J]. Technology <italic>&</italic> Economics in Petrochemicals,2018,34(1):55-61(in Chinese). doi:  10.3969/j.issn.1674-1099.2018.01.014
    [12] ZHAO Y Z, LIU F Y, LU J, et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites[J]. Fibers and Polymers,2017,18(8):1586-1593. doi:  10.1007/s12221-017-1257-8
    [13] 王昊, 颜春, 徐海兵, 等. 碳纤维上浆剂的研究进展[J]. 热固性树脂, 2016, 31(3):65-69.

    WANG H, YAN C, XU H B, et al. Research progress of carbon fiber sizing agent[J]. Thermosetting Resin,2016,31(3):65-69(in Chinese).
    [14] 郝瑞婷, 张学军, 田艳红. 耐热型热塑性上浆剂研究进展[J]. 化工进展, 2018, 37(S1):117-124.

    HAO R T, ZHANG X J, TIAN Y H. Research progress of heat-resistant thermoplastic sizing agents[J]. Chemical Industry and Engineering Progress,2018,37(S1):117-124(in Chinese).
    [15] 李金亮, 高小茹. 碳纤维上浆剂的研究进展[J]. 纤维复合材料, 2015(4):37-40. doi:  10.3969/j.issn.1003-6423.2015.04.009

    LI J L, GAO X R. Advances in sizing agent for carbon fiber[J]. Fiber Composites,2015(4):37-40(in Chinese). doi:  10.3969/j.issn.1003-6423.2015.04.009
    [16] 李松荣, 胡照会, 黄其忠. 碳纤维热塑性上浆剂研究进展[J]. 纤维复合材料, 2017(2):3-7. doi:  10.3969/j.issn.1003-6423.2017.02.001

    LI S R, HU Z H, HUANG Q Z. Progress in thermoplastic sizing agent for carbon fiber[J]. Fiber Composites,2017(2):3-7(in Chinese). doi:  10.3969/j.issn.1003-6423.2017.02.001
    [17] YAO T T, LIU Y T, ZHU H, et al. Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of polymer on carbon fibers[J]. Composites Science and Technology,2019,182:107763. doi:  10.1016/j.compscitech.2019.107763
    [18] YAMAMOTO T, UEMATSU K, IRISAWA T, et al. A polymer colloidal technique for enhancing bending properties of carbon fiber-reinforced thermoplastics using nylon modifier[J]. Composites Part A: Applied Science and Manufacturing,2018,112:250-254. doi:  10.1016/j.compositesa.2018.06.011
    [19] GAMZE KARSLI N, OZKAN C, AYTAC A, et al. Characterization of poly(butylene terephthalate) composites prepared by using various types of sized carbon fibers[J]. Materials <italic>& </italic>Design,2015,87:318-323.
    [20] XU B, WANG X S, LU Y. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide[J]. Applied Surface Science,2006,253(5):2695-2701. doi:  10.1016/j.apsusc.2006.05.044
    [21] LIU L, YAN F, LI M, et al. A novel thermoplastic sizing containing graphene oxide functionalized with structural analogs of matrix for improving interfacial adhesion of CF/PES composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:418-428. doi:  10.1016/j.compositesa.2018.09.004
    [22] 张学军, 郝瑞婷, 田艳红, 等. 一种碳纤维用耐热型水性上浆剂及其制备方法和应用. 中国: ZL 201810868788.6[P]. 2020-04-15.

    ZHANG X J, HAO R T, TIAN Y H, et al. Preparation and application of an heat resistant waterborne sizing agent for carbon fiber. China: ZL 201810868788.6[P]. 2020-04-15(in Chinese).
    [23] 水兴瑶. 应用于热塑性基体的碳纤维水性上浆剂的制备及性能研究[D]. 杭州: 浙江理工大学, 2016.

    SHUI X Y. Preparation and properties of the waterborne sizing agent applied to thermoplastic matrix for carbon fiber[D]. Hangzhou: Zhejiang Sci-Tech University, 2016(in Chinese).
    [24] HASSAN E A M, YANG L, ELAGIB T H H, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B: Engineering,2019,171:70-77. doi:  10.1016/j.compositesb.2019.04.015
    [25] RAN J, LAI X, LI H, et al. Remarkable enhancement of mechanical and tribological properties of polyamide 46/polyphenylene oxide alloy by polyurethane-coated carbon fiber[J]. High Performance Polymers,2019,31(9-10):1122-1131. doi:  10.1177/0954008319827639
    [26] KISHI H, NAKAO N, KUWASHIRO S, et al. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties[J]. Express Polymer Letters,2017,11(4):334-342. doi:  10.3144/expresspolymlett.2017.32
    [27] SAMANTA S, HE J, SELVAKUMAR S, et al. Polyamides based on the renewable monomer, 1, 13-tridecane diamine II: Synthesis and characterization of nylon 13, 6[J]. Polymer,2013,54(3):1141-1149. doi:  10.1016/j.polymer.2012.12.034
    [28] BAI Y P, HUANG L, HUANG T, et al. Synthesis and characterization of a water-soluble nylon copolyamide[J]. Polymer,2013,54(16):4171-4176. doi:  10.1016/j.polymer.2013.05.070
    [29] 张显果, 孙春燕, 朱帅甫, 等. CF表面处理对尼龙66/CF复合材料性能的影响[J]. 工程塑料应用, 2014, 42(8):82-86. doi:  10.3969/j.issn.1001-3539.2014.08.019

    ZHANG X G, SUN C Y, ZHU S F, et al. Impact of surface modification of carbon fiber on properties of PA66/CF composites[J]. Engineering Plastics Application,2014,42(8):82-86(in Chinese). doi:  10.3969/j.issn.1001-3539.2014.08.019
    [30] SUGIURA N, MAKI N. Sizing agent for carbon fiber, method for sizing carbon fiber by said sizing agent, sized carbon fiber and knitted or woven fabric using said carbon fiber. U. S.: 7, 135, 516[P]. 2020-04-15.
    [31] CZIGÁNY T, ISHAK Z A M, KARGER-KOCSIS J. On the failure mode in dry and hygrothermally aged short fiber-reinforced injection-molded polyarylamide composites by acoustic emission[J]. Applied Composite Materials,1995,2(5):313-326. doi:  10.1007/BF00568767
    [32] LEI Y P, ZHANG J F, ZHANG T, et al. Water diffusion in carbon fiber reinforced polyamide 6 composites: Experimental, theoretical, and numerical approaches[J]. Journal of Reinforced Plastics and Composites,2019,38(12):578-587. doi:  10.1177/0731684419835034
    [33] SAKATA J, MATSUKAWA T, KAWATA H. Fiber treatment agent, carbon fibers treated with fiber treatment agent, and carbon fiber composite material containing said carbon fibers: U. S., 14/768, 5432016-2-4[P]. 2020-04-15.
    [34] MICHELMAN. Michelman introduces hydrosize® PA845-ideal for carbon fiber sizing where thermal stability is required[EB/OL]. (2012-02-16)[2020-04-15]. http://www.prweb.com/releases/2012/2/prweb9202629.htm.
    [35] MICHELMAN. Technical data sheet[EB/OL]. (2018-10-12)[2020-04-15]. https://www.michelman.co.jp/en/#coatings.
    [36] LOOS M R, YANG J, FEKE D L, et al. Enhancement of fatigue life of polyurethane composites containing carbon nanotubes[J]. Composites Part B: Engineering,2013,44(1):740-744. doi:  10.1016/j.compositesb.2012.01.038
    [37] POKHAREL P. High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol[J]. Chemical Engineering Journal,2014,253:356-365. doi:  10.1016/j.cej.2014.05.046
    [38] WANG C, WU Y C, LI Y C, et al. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant[J]. Polymers for Advanced Technologies,2017,29(1):668-676.
    [39] ZHANG W S, YANG C L, YAO L L, et al. Effect of polyurethane sizing agent on interface properties of carbon fiber reinforced polycarbonate composites[J]. Journal of Applied Polymer Science,2019,136(38):47982.
    [40] 杨常玲, 刘立果, 吕永根, 等. 一种乳液型碳纤维用上浆剂及其制备方法和应用: 中国, ZL 201710183154.2[P]. 2020-04-15.

    YANG C L, LIU L G, LV Y G, et al. Preparation and application of an emulsion type sizing agent for carbon fiber: China, ZL 201710183154.2[P]. 2020-04-15(in Chinese).
    [41] ZHAO D F, HAMADA H, YANG Y Q. Influence of polyurethane dispersion as surface treatment on mechanical, thermal and dynamic mechanical properties of laminated woven carbon-fiber-reinforced polyamide 6 composites[J]. Composites Part B: Engineering,2019,160:535-545. doi:  10.1016/j.compositesb.2018.12.105
    [42] ZHANG T, SONG Y X, ZHAO Y Q, et al. Effect of hybrid sizing with nano-SiO<sub>2</sub> on the interfacial adhesion of carbon fibers/nylon 6 composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,553:125-133.
    [43] 燕丰. 西格里新型热塑性相容碳纤维投产[J]. 橡塑技术与装备, 2014(18):65.

    YAN F. SGL new thermoplastic compatible carbon fiber put into production[J]. China Rubber/Plastics Technology and Equipment,2014(18):65(in Chinese).
    [44] MICHELMAN. Fibers & composites[EB/OL]. (2012-09-24)[2020-04-15]. https://www.michelman.com.cn/en/industry-expertise/fibers-composites/.
    [45] MICHELMAN. Product selection guide sizings for engineered resins[EB/OL]. (2018-05-16)[2020-04-15]. https://www.michelman.co.jp/en/#coatings.
    [46] TEIJIN. Product data sheet Tenax® filament yarn[EB/OL]. (2020-02-15)[2020-04-15].https://www.teijincar-bon.com/products/tenaxr-carbon-fiber/tenaxr-filament-yarn.
    [47] WANG L, SHEN Y D, LAI X J, et al. Effect of nanosilica content on properties of polyurethane/silica hybrid emulsion and its films[J]. Journal of Applied Polymer Science,2011,119(6):3521-3530. doi:  10.1002/app.33024
    [48] WANG S Y, ZHOU Z G, ZHANG J Z, et al. Effect of temperature on bending behavior of woven fabric-reinforced PPS-based composites[J]. Journal of Materials Science,2017,52(24):13966-13976. doi:  10.1007/s10853-017-1480-0
    [49] FLANAGAN M, GROGAN D M, GOGGINS J, et al. Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers[J]. Composites Part A: Applied Science and Manufacturing,2017,101:173-184. doi:  10.1016/j.compositesa.2017.06.013
    [50] MA R, TANG T T. Current strategies to improve the bioactivity of PEEK[J]. International Journal of Molecular Sciences,2014,15(4):5426-5445. doi:  10.3390/ijms15045426
    [51] LIU W B, ZHANG S, HAO L F, et al. Properties of carbon fiber sized with poly(phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science,2012,128(6):3702-3709.
    [52] GAO X P, HUANG Z G, ZHOU H M, et al. Higher mechanical performances of CF/PEEK composite laminates via reducing interlayer porosity based on the affinity of functional s-PEEK[J]. Polymer Composites,2019,40(9):3749-3757. doi:  10.1002/pc.25236
    [53] HASSAN E A M, ELAGIB T H H, MEMON H, et al. Surface modification of carbon fibers by grafting peek-NH<sub>2</sub> for improving interfacial adhesion with polyetheretherketone[J]. Materials,2019,12(5):778. doi:  10.3390/ma12050778
    [54] HASSAN E A M, GE D, YANG L, et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites Part A: Applied Science and Manufacturing,2018,112:155-160. doi:  10.1016/j.compositesa.2018.05.029
    [55] 周光远, 王红华, 张兴迪, 等. 一种碳纤维用耐温型乳液上浆剂及其制备: 中国, ZL 201710637200.1[P]. 2020-04-15.

    ZHOU G Y, WANG H H, ZHANG X D, et al. A heat resistant emulsion sizing agent for carbon fiber and its preparation: China, ZL 201710637200.1[P]. 2020-04-15(in Chinese).
    [56] XIE J F, YAO L, XU F J, et al. Fabrication and characterization of three-dimensional PMR polyimide composites reinforced with woven basalt fabric[J]. Composites Part B: Engineering,2014,66:268-275. doi:  10.1016/j.compositesb.2014.05.028
    [57] CHUANG S L, CHU N J, WHANG W T. Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics[J]. Journal of Applied Polymer Science,1990,41(1-2):373-382.
    [58] LING J Q, ZHAI W T, FENG W W, et al. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2013,5(7):2677-2684.
    [59] VISWANATHAN H, WANG Y Q, AUDI A A, et al. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 24. Interfacial interactions between polyimide resin and electrochemically oxidized PAN-based carbon fibers[J]. Chemistry of Materials,2001,13(5):1647-1655. doi:  10.1021/cm000930h
    [60] ZHOU C, CHENG J L, SUN Y. Preparation and property of epoxy based nano-SiO<sub>2</sub>/TiO<sub>2</sub>/polyimide hybrid enhanced sizing[J]. Advanced Materials Research,2011,335-336:96-100. doi:  10.4028/www.scientific.net/AMR.335-336.96
    [61] NAITO K. Tensile properties of polyimide composites incorporating carbon nanotubes-grafted and polyimide-coated carbon fibers[J]. Journal of Materials Engineering and Performance,2014,23(9):3245-3256. doi:  10.1007/s11665-014-1110-9
    [62] LIU H S, ZHAO Y, LI N, et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI <italic>& </italic>ZIF-67 synergistic modification[J]. Journal of Materials Research and Technology,2019,8(6):6289-6300. doi:  10.1016/j.jmrt.2019.10.022
    [63] GIRAUD I, FRANCESCHI-MESSANT S, PEREZ E, et al. Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation[J]. Applied Surface Science,2013,266:94-99. doi:  10.1016/j.apsusc.2012.11.098
    [64] GIRAUD I, FRANCESCHI-MESSANT S, PEREZ E, et al. Influence of new thermoplastic sizing agents on the mechanical behavior of poly (ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science,2015,132(38):42550.
    [65] CHARY R R, HIRT D E. Coating carbon fibers with a thermoplastic polyimide using aqueous foam[J]. Polymer Composites,1994,15(4):306-311. doi:  10.1002/pc.750150409
    [66] YUAN H J, LU C X, ZHANG S C, et al. Preparation and characterization of a polyimide coating on the surface of carbon fibers[J]. New Carbon Materials,2015,30(2):115-121. doi:  10.1016/S1872-5805(15)60179-2
    [67] YUAN H J, ZHANG S C, LU C X, et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing[J]. Applied Surface Science,2013,279:279-284. doi:  10.1016/j.apsusc.2013.04.085
    [68] 黄铄涵. Toho Tenax: 碳纤维的热塑性应用[J]. 国际纺织导报, 2015(1):42. doi:  10.3969/j.issn.1007-6867.2015.01.010

    HUANG S H. Toho Tenax: Application of carbon fiber for thermoplastic[J]. Melliand-China,2015(1):42(in Chinese). doi:  10.3969/j.issn.1007-6867.2015.01.010
    [69] 齐磊, 刘扬涛, 高猛, 等. 碳纤维表面处理和上浆剂的研究进展[J]. 纤维复合材料, 2016, 33(1):33-35. doi:  10.3969/j.issn.1003-6423.2016.01.008

    QI L, LIU Y T, GAO M, et al. Development of carbon fiber surface treatment and sizing[J]. Fiber Composites,2016,33(1):33-35(in Chinese). doi:  10.3969/j.issn.1003-6423.2016.01.008
    [70] 陆逢. 碳纳米管和环氧树脂改性双马来酰亚胺树脂的研究[D]. 武汉: 华中科技大学, 2015.

    LU F. Study on bismaleimide resin modified with carbon nanotubes and epoxy[D]. Wuhan: Huazhong University of Science and Technology, 2015(in Chinese).
    [71] 张国良, 李艳华, 陈秋飞, 等. 一种碳纤维上浆剂: 中国, ZL 201210463139.0[P]. 2020-04-15.

    ZHANG G L, LI Y H, CHEN Q F, et al. A sizing agent for carbon fiber: China, ZL 201210463139.0[P]. 2020-04-15(in Chinese).
    [72] YI J W, LEE W, SEONG D G, et al. Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites[J]. Composites Part A: Applied Science and Manufacturing,2016,87:212-219. doi:  10.1016/j.compositesa.2016.04.028
    [73] BOWMAN S, JIANG Q R, MEMON H, et al. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites[J]. Molecules,2018,23(3):547. doi:  10.3390/molecules23030547
    [74] HEXCEL. HexTow® carbon fiber selector guide[EB/OL]. (2020)[2020-04-15]. https://www.hexcel.com/Products/Carbon-Fiber/HexTow-Chopped-Carbon-Fiber?ljs=en.
    [75] LI N, ZONG L S, WU Z Q, et al. Amino-terminated nitrogen-rich layer to improve the interlaminar shear strength between carbon fiber and a thermoplastic matrix[J]. Composites Part A: Applied Science and Manufacturing,2017,101:490-499. doi:  10.1016/j.compositesa.2017.06.023
    [76] XI X F, CHEN Y S, WANG J, et al. A multiscale hydrothermal carbon layer modified carbon fiber for composite fabrication[J]. RSC Advances,2018,8(41):23339-23347. doi:  10.1039/C8RA04064H
    [77] YAMAMOTO T, YABUSHITA S, IRISAWA T, et al. Enhancement of bending strength, thermal stability and recyclability of carbon-fiber-reinforced thermoplastics by using silica colloids[J]. Composites Science and Technology,2019,181:107665. doi:  10.1016/j.compscitech.2019.05.022
  • [1] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [2] 郎风超, 朱静, 李云芳, 潘俊臣, 姜爱峰, 杨诗婷, 邢永明.  SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190712.001
    [3] 周文英, 张财华, 李旭, 张帆, 张祥林.  基于界面结构调控硅粒子/聚偏氟乙烯复合材料介电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200210.001
    [4] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [5] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [6] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [7] 刘新, 陈铎, 何辉永, 孙涛, 武湛君.  热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.006
    [8] 孙颖颖, 周璐瑶, 韩宇, 崔柳.  气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200111.004
    [9] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [10] 史俊伟, 刘松平, 荀国立, 杨刚.  孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191008.001
    [11] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [12] 吴佳奇, 李刚, 杨小平, 苏清福.  耐高温碳纤维/双马来酰亚胺树脂复合材料制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191211.001
    [13] 阳雄南, 张效林, 聂孙建, 王哲, 卓光铭, 李少歌.  不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190902.002
    [14] 韩永森, 孙健, 张昕, 郭文敏, 李忠华.  微纳米SiC/环氧树脂复合材料的界面和非线性电导特性, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191120.002
    [15] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [16] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [17] 汪蔚, 曹建达, 郑敏敏, 陈婷婷, 杨李懿.  BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.005
    [18] 王怡然, 高义民, 李烨飞, 赵四勇, 李梦婷.  石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响, 复合材料学报.
    [19] 胡晓兰, 刘文军, 余荣禄, 周川, 李伟东, 周玉敬, 刘刚, 益小苏.  含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200115.001
    [20] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191120.001
  • 加载中
图(7)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  58
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-17
  • 录用日期:  2020-04-28
  • 网络出版日期:  2020-05-07
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回