留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥基复合材料热电效应综述:机制、材料、影响因素及应用

崔一纬 魏亚

崔一纬, 魏亚. 水泥基复合材料热电效应综述:机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9): 2077-2093 doi:  10.13801/j.cnki.fhclxb.20200423.002
引用本文: 崔一纬, 魏亚. 水泥基复合材料热电效应综述:机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9): 2077-2093 doi:  10.13801/j.cnki.fhclxb.20200423.002
Yiwei CUI, Ya WEI. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002
Citation: Yiwei CUI, Ya WEI. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002

水泥基复合材料热电效应综述:机制、材料、影响因素及应用

doi: 10.13801/j.cnki.fhclxb.20200423.002
基金项目: 国家重点研发计划(2018YFB1600200)
详细信息
    通讯作者:

    魏亚,博士,副教授,博士生导师,研究方向为水泥基材料变形力学性能多尺度模拟表征、长寿命道路材料与结构、结构新材料研发 E-mail:yawei@tsinghua.edu.cn

  • 中图分类号: TB332

A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application

  • 摘要: 在水泥基复合材料中掺入功能填料会使其获得将热能转化为电能的热电效应,可用于环境热量转换收集、混凝土结构健康检测传感器和智慧交通系统等方面。本文总结了热电水泥基复合材料(TECC)的热电效应机制、常用的功能填料、制备过程及主要工程应用,重点分析了不同功能填料对TECC热电效应的增强效果和机制,及材料分散程度、水分、疲劳荷载、温度循环等因素对TECC热电效应的影响机制。本综述指明了TECC在理论和应用方面的研究新方向,对今后水泥基复合材料热电效应的实验设计和性能提升具有指导作用。
  • 图  1  热电水泥基复合材料(TECC)电阻率随功能填料含量变化示意图

    Figure  1.  Scheme of resistivity variation of thermoelectric cement-based composites (TECC) with content of functional filler

    图  2  温差作用下热端到冷端的载流子流动示意图

    Figure  2.  Schematic representation of carrier flow from hot side to cold side under temperature difference((a) Electrons flow from hot side to cold side; (b) Holes flow from hot side to cold side)

    图  3  热电优值ZT与载流子浓度的关系[14-15]

    Figure  3.  Relationship between thermoelectric figure of merit ZT and carrier concentration[14-15]

    S—Seebeck coefficient; PF—Power factor; k—Thermal conductivity; σ—Electrical conductivity

    图  4  TECC的发展历史

    Figure  4.  History of TECC

    CF—Carbon fiber; CNTs—Carbon nanotubes; CFRC—Carbon fiber reinforced cement-based composite

    图  5  掺入不同长度碳纤维的水泥砂浆在加热和冷却过程中电压随温差的变化[20]

    Figure  5.  Variation of Seebeck voltage vs temperature difference during heating and cooling of cement mortars containing carbon fiber with different lengths[20]

    图  6  碳纤维含量与TECC的电导率及Seebeck系数的关系[16]

    Figure  6.  Relationship between content of carbon fiber vs. conductivity and Seebeck coefficient of TECC[16]

    图  7  单层石墨烯(a)、单壁碳纳米管(b)和多壁碳纳米管(c)的结构[46]

    Figure  7.  Structures of single-layer graphene(a), single wall carbon nanotubes(b) and multiwall carbon nanotubes(c)[46]

    图  8  加入不同含量碳纳米管的碳纤维增强水泥基复合材料(CFRC)的Seebeck系数和电阻率[36]

    Figure  8.  Seebeck coefficient and resistivity of carbon fiber reinforced cement-based composites(CFRC) with variable carbon nanotubes contents[36]

    图  9  不同碳纳米管掺量的碳纳米管增强水泥基复合材料的Seebeck系数、电导率(插图是掺量为15.0wt%碳纳米管的复合材料放大图)、热导率及热电优值[37]

    Figure  9.  Seebeck coefficient, electrical conductivity (Insert is a magnified image of the composite with 15.0wt% carbon nanotubes), thermal conductivity and thermoelectric figure of merit of carbon nanotubes reinforced cement-based composites with variable carbon nanotubes addition[37]

    图  10  不同钢纤维体积分数的水泥基复合材料的绝对热电动势率[13]

    Figure  10.  Absolute thermoelectric power of cement-based composites with various volume fractions of steel fiber[13]

    图  11  TECC的制造工艺

    Figure  11.  Fabrication process of TECC

    图  12  p型碳纳米管增强水泥基和n型碳纳米管增强水泥基复合材料在干燥前后的电导率和Seebeck系数[1]

    Figure  12.  Electrical conductivity and Seebeck coefficient of p-type carbon nanotubes reinforced cement-based and n-type carbon nanotubes reinforced cement-based composites measured before and after drying[1]

    图  13  疲劳载荷为1.5 kN时不同疲劳次数下膨胀石墨-碳纤维增强水泥基复合材料电导率和Seebeck系数随温度的变化曲线[67]

    Figure  13.  Variation of conductivity and Seebeck coefficient of expanded graphite-carbon fiber reinforced cement-based composite with temperature under different fatigue times at fatigue load of 1.5 kN[67]

    图  14  建筑物隔墙内砂浆电压和温度梯度的变化[8]

    Figure  14.  Change of voltage of mortar and temperature gradient in building partition[8]

    图  15  p型与n型TECC组成的热电发电机结构模型及多个p/n型TECC组成的热电模型

    Figure  15.  Cement-based thermoelectric generator module consisting of a p-type and n-type TECC and thermoelectric module containing many p/n-type TECCs

    表  1  TECC中功能填料总结

    Table  1.   Summary of functional fillers for TECC

    ClassificationTypical conductive phase material
    CriteriaCategory
    Material component Carbonaceous material CF, CNTs, graphene, graphite, EG
    Metal or metal oxide SF, ZnO, Fe2O3, Bi2Te3, Ca3Co4O8, Bi2O3, MnO2
    Others SS, MSFA
    Filler scale Macroscale SS, MSFA, SF
    Microscale CF, graphite, Fe2O3, Ca3Co4O8, Bi2O3
    Nanoscale CNT, graphene, nano MnO2, nano ZnO, nano Fe2O3, EG
    Dimension 2D Graphene
    1D CNT
    0D Nano MnO2, nano ZnO, nano Fe2O3
    p/n type p-type CF, CNTs, graphene, ZnO, Fe2O3, Bi2Te3, Ca3Co4O8, Bi2O3, SS, MSFA
    n-type SF, Graphite, EG, MnO2
    Notes: MSFA—Magnetically separated fly ash; SF—Steel fiber; SS—Steel slag; EG—Expanded graphite.
    下载: 导出CSV

    表  2  已有文献中水泥基复合材料热电性能总结

    Table  2.   Summary of thermoelectric properties of cement-based composites in the existing literatures

    MatrixFunctional fillerThermoelectric propertyTypeYearRef.
    σ/(S·m–1)S/(μV·℃–1)k/(W(m·K)–1)PF/(μW·m–1·K–2)ZT
    Cement paste–2n1999[18]
    Cement paste0.5wt% CF12p1999[19]
    Cement paste1.0wt% CF0.219.730.221.334×10–7(27℃)p2014[21]
    Concrete0.5wt% CF125.1p2008[22]
    Cement paste0.5wt% Bromine-intercalated CF14.93p2000[23]
    Mortar50vol% MSFA+0.4vol% CF3.32 637.16p2017[7]
    Cement paste200wt% SS+0.4wt% CF0.1712.4p2013[24]
    Concrete300wt% SS48p2008[25]
    Cement paste0.2vol% SF0.313×10–2–68n2004[13]
    Cement paste0.3wt% Ca3Co4O8+CF58.6p2013[26]
    Cement paste5.0wt% Fe2O3+CF90.23p2014[27]
    5.0wt% Bi2O3+ CF97.94p
    Cement paste1.0wt% Bi2Te3+0.4wt% CF0.1621.4p2014[28]
    Cement paste5.0wt% Nano α-Fe2O31.7×10–62 500p2016[29]
    5.0wt% Nano ZnO0.2×10–63 300p
    Cement paste5.0wt% Fe2O3+1.0wt% CF~0.5×10–42 7500.222.08(55.5℃)3.11×10–3(55.5℃)p2016[14]
    Cement paste5.0wt% Nano MnO21.88×10–4–3 0850.727.60×10–7(34.5℃)n2018[30]
    Cement paste3.56wt% Al doped ZnO25×10–30.187p2017[31]
    Cement paste5.0wt% nano NiO6.76×10–34 050P2019[32]
    Cement paste20wt% Graphite+1.2wt% CF17.29p2011[33]
    30wt% Graphite+0.6wt% CF–52.23n
    Concrete5.0wt% Graphite2 270p2008[34]
    Cement paste5.0wt% EG+1.2wt% CF0.78–11.597.85×10–4(33℃)n2017[35]
    Cement paste15wt% EG24.8~–513.2136.38(79℃)6.82×10–4(75℃)n2018[2]
    Cement paste1.0wt% CNTs+0.4wt% CF0.001422.6p2013[36]
    Cement paste15wt% CNTs0.857.980.8180.25(75℃)9.33×10–5(75℃)p2018[37]
    Cement paste1.0wt% p-CNTs0.69202.2×10–4p2019[1]
    1.0wt% n-CNTs2.19–580.007n
    Cement paste15.0wt% Graphene1 620341.3270.44×10–3(70℃)p2019[38]
    下载: 导出CSV
  • [1] TZOUNIS L, LIEBSCHER M, FUGE R, et al. P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator[J]. Energy and Buildings,2019,191:151-163. doi:  10.1016/j.enbuild.2019.03.027
    [2] WEI J, ZHAO L, ZHANG Q, et al. Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting[J]. Energy and Buildings,2018,159:66-74. doi:  10.1016/j.enbuild.2017.10.032
    [3] GOMIS J, GALAO O, GOMIS V, et al. Self-heating and deicing conductive cement: Experimental study and modeling[J]. Construction and Building Materials,2015,75:442-449. doi:  10.1016/j.conbuildmat.2014.11.042
    [4] SUN M, LI Z, LIU Q, et al. A study on thermal self-diagnostic and self-adaptive smart concrete structures[J]. Cement and Concrete Research,2000,30(8):1251-1253. doi:  10.1016/S0008-8846(00)00284-2
    [5] WEN S, CHUNG D D L. Cement-based thermocouples[J]. Cement and Concrete Research,2001,31(3):507-510. doi:  10.1016/S0008-8846(00)00391-4
    [6] SUN M, LI Z, MAO Q, et al. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cement and Concrete Research,1998,28(4):549-554. doi:  10.1016/S0008-8846(98)00011-8
    [7] WANG Z, WANG Z, NING M, et al. Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system[J]. Ceramics International,2017,43(12):8685-8693. doi:  10.1016/j.ceramint.2017.03.202
    [8] PICHÓR W, FRĄC M. Multifunctional cement composites with expanded graphite for temperature monitoring of buildings[J]. Advances in Cement Research,2020,32(9):413-420.
    [9] 魏剑, 赵莉莉, 张倩, 等. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1):84-89. doi:  10.11896/j.issn.1005-023X.2017.01.011Development

    WEI Jian, ZHAO Lili, ZHANG Qian, et al. Development of Seebeck effect of carbon fiber reinforced cement-based composites[J]. Materials Reports,2017,31(1):84-89(in Chinese). doi:  10.11896/j.issn.1005-023X.2017.01.011Development
    [10] DONG W, LI W, TAO Z, et al. Piezoresistive properties of cement-based sensors: Review and perspective[J]. Construction and Building Materials,2019,203:146-163. doi:  10.1016/j.conbuildmat.2019.01.081
    [11] GARCÍA Á, SCHLANGEN E, VAN DE VEN M, et al. Electrical conductivity of asphalt mortar containing conductive fibers and fillers[J]. Construction and Building Materials,2009,23(10):3175-3181. doi:  10.1016/j.conbuildmat.2009.06.014
    [12] TZOUNIS L, GRAVALIDIS C, VASSILIADOU S, et al. Fiber yarns/CNT hierarchical structures as thermoelectric generators[J]. Materials Today: Proceedings,2007,4(7):7070-7075.
    [13] WEN S, CHUNG D D L. Effect of fiber content on the thermoelectric behavior of cement[J]. Journal of Materials Science,2004,39(13):4103-4106. doi:  10.1023/B:JMSC.0000033389.83459.8f
    [14] WEI J, ZHANG Q, ZHAO L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceramics International,2016,42(10):11568-11573. doi:  10.1016/j.ceramint.2016.04.014
    [15] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials,2008,7(2):105-114. doi:  10.1038/nmat2090
    [16] SUN M, LI Z, MAO Q, et al. Thermoelectric percolation phenomena in carbon fiber-reinforced concrete[J]. Cement and Concrete Research,1998,28(12):1707-1712. doi:  10.1016/S0008-8846(98)00161-6
    [17] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials,2007,19(8):1043-1053. doi:  10.1002/adma.200600527
    [18] WEN S, CHUNG D D L. Seebeck effect in carbon fiber-reinforced cement[J]. Cement and Concrete Research,1999,29(12):1989-1993. doi:  10.1016/S0008-8846(99)00185-4
    [19] SUN M, LI Z, MAO Q, et al. A study on thermal self-monitoring of carbon fiber reinforced concrete[J]. Cement and Concrete Research,1999,29(5):769-771. doi:  10.1016/S0008-8846(99)00006-X
    [20] 陈兵, 姚武, 吴科如. 掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J]. 建筑材料学报, 2004, 7(3):261-268. doi:  10.3969/j.issn.1007-9629.2004.03.003

    CHEN Bing, YAO Wu, WU Keru. Studies on the thermoelectric property of cement mortar with carbon fiber and micro steel fiber[J]. Journal of Building Materials,2004,7(3):261-268(in Chinese). doi:  10.3969/j.issn.1007-9629.2004.03.003
    [21] WEI J, NIE Z, HE G, et al. Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites[J]. RSC Advances,2014,4(89):48128-48134. doi:  10.1039/C4RA07864K
    [22] BAHAR D, SALIH Y. Thermoelectric behavior of carbon fiber reinforced lightweight concrete with mineral admixtures[J]. New Carbon Materials,2008,23(1):21-24. doi:  10.1016/S1872-5805(08)60009-8
    [23] WEN S, CHUNG D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cement and Concrete Research,2000,30(8):1295-1298. doi:  10.1016/S0008-8846(00)00341-0
    [24] ZUO J, YAO W, QIN J. Enhancing the thermoelectric properties in carbon fiber/cement composites by using steel slag[J]. Key Engineering Materials,2013,539:103-107.
    [25] 唐祖全, 童成丰, 钱觉时, 等. 钢渣混凝土的Seebeck效应研究[J]. 重庆建筑大学学报, 2008, 30(3):125-128.

    TANG Zuquan, TONG Chengfeng, QIAN Jueshi, et al. Study on the Seebeck effect in steel-slag concrete[J]. Journal of Chongqing Jianzhu University,2008,30(3):125-128(in Chinese).
    [26] WEI J, HAO L, HE G, et al. Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>[J]. Applied Mechanics and Materials,2013,320:354-357.
    [27] WEI J, HAO L, HE G, et al. Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface[J]. Ceramics International,2014,40(6):8261-8263. doi:  10.1016/j.ceramint.2014.01.024
    [28] 姚武, 夏强. 碲化铋-碳纤维水泥基材料的制备及热电性能[J]. 功能材料, 2014, 45(15):15134-15137,15142. doi:  10.3969/j.issn.1001-9731.2014.15.029

    YAO Wu, XIA Qiang. Preparation and thermoelectric properties of bismuth telluride-carbon fiber reinforced cement composites[J]. Journal of Functional Materials,2014,45(15):15134-15137,15142(in Chinese). doi:  10.3969/j.issn.1001-9731.2014.15.029
    [29] JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials,2016,115:576-581. doi:  10.1016/j.conbuildmat.2016.04.035
    [30] JI T, ZHANG X, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering,2018,30(9):04018224. doi:  10.1061/(ASCE)MT.1943-5533.0002401
    [31] GHAHARI S A, GHAFARI E, LU N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting[J]. Construction and Building Materials,2017,146:755-763. doi:  10.1016/j.conbuildmat.2017.04.165
    [32] 肖龙, 季涛, 廖晓, 等. 氧化镍水泥基复合材料热电性能研究[J]. 新型建筑材料, 2019, 46(3):32-35. doi:  10.3969/j.issn.1001-702X.2019.03.009

    XIAO Long, JI Tao, LIAO Xiao, et al. Thermoelectric property of cement composites with nickel oxide[J]. New Building Materials,2019,46(3):32-35(in Chinese). doi:  10.3969/j.issn.1001-702X.2019.03.009
    [33] CAO H, YAO W, QIN J. Seebeck effect in graphite-carbon fiber cement based composite[J]. Advanced Materials Research,2010,177:566-569.
    [34] 赵文艳, 张文福, 马昌恒, 等. 石墨导电混凝土力学性能与热电特性[J]. 大庆石油学院学报, 2008, 32(6):83-85,92.

    ZHAO Wenyan, ZHANG Wenfu, MA Changheng, et al. Mechanical and thermoelectric property of graphite electrically conductive concrete[J]. Journal of Daqing Petroleum Institute,2008,32(6):83-85,92(in Chinese).
    [35] WEI J, ZHANG Q, ZHAO L, et al. Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites[J]. Ceramics International,2017,43(14):10763-10769. doi:  10.1016/j.ceramint.2017.05.088
    [36] ZUO J, YAO W, WU K. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2015,23(5):383-391.
    [37] WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International,2018,44(6):5829-5833. doi:  10.1016/j.ceramint.2018.01.074
    [38] GHOSH S, HARISH S, ROCKY K A, et al. Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting[J]. Energy and Buildings,2019,202:109419.
    [39] WEN S, CHUNG D D L. Thermoelectric behavior of carbon-cement composites[J]. Carbon,2002,13(40):2495-2497.
    [40] 蒋正武, 孙振平, 王新友. 导电混凝土技术[J]. 混凝土, 2000(9):55-58.

    JIANG Zhengwu, SUN Zhenping, WANG Xinyou. The techniques of conductive concrete[J]. Concrete,2000(9):55-58(in Chinese).
    [41] PICHÓR W. Dynamic electrical properties of lightweight cement mortars with waste graphite additive[J]. Kompozyty (Composites),2010,19:175.
    [42] PICHÓR W, FRĄC M. Thermoelectric properties of expanded graphite as filler of multifunctional cement composites[J]. Composites Theory and Practice,2012,12(3):205-209.
    [43] HAN B, SUN S, DING S, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2015,70:69-81. doi:  10.1016/j.compositesa.2014.12.002
    [44] KONSTA-GDOUTOS M S, BATIS G, DANOGLIDIS P A, et al. Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars[J]. Construction and Building Materials,2017,147:48-57.
    [45] SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites,2012,34(10):1104-1113. doi:  10.1016/j.cemconcomp.2012.07.008
    [46] FOLDYNA J, FOLDYNA V, ZELEŇÁK M. Dispersion of carbon nanotubes for application in cement composites[J]. Procedia Engineering,2016,149:94-99. doi:  10.1016/j.proeng.2016.06.643
    [47] TAO J, WANG X, WANG Z, et al. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites[J]. Construction and Building Materials,2019,209:665-678. doi:  10.1016/j.conbuildmat.2019.03.173
    [48] LI C, THOSTENSON E T, CHOU T W. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites[J]. Applied Physics Letters,2007,91(22):223114. doi:  10.1063/1.2819690
    [49] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi:  10.1038/nmat3064
    [50] WEN S, CHUNG D D L. Seebeck effect in steel fiber reinforced cement[J]. Cement and Concrete Research,2000,30(4):661-664. doi:  10.1016/S0008-8846(00)00205-2
    [51] WEN S, CHUNG D D L. Origin of the thermoelectric behavior of steel fiber cement paste[J]. Cement And Concrete Research,2002,32(5):821-823. doi:  10.1016/S0008-8846(01)00754-2
    [52] LIANG D, YANG H, FINEFROCK S W, et al. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting[J]. Nano Letters,2012,12(4):2140-2145. doi:  10.1021/nl300524j
    [53] MADAN D, WANG Z, CHEN A, et al. Enhanced performance of dispenser printed MA n-type Bi<sub>2</sub>Te<sub>3</sub> composite thermoelectric generators[J]. ACS Applied Materials <italic>&</italic> Interfaces,2012,4(11):6117-6124.
    [54] GE Z, QIN P, HE D, et al. Highly enhanced thermoelectric properties of Bi/Bi<sub>2</sub>S<sub>3</sub> nanocomposites[J]. ACS Applied Materials <italic>&</italic> Interfaces,2017,9(5):4828-4834.
    [55] 童成丰. 钢渣导电混凝土的温敏性研究[D]. 重庆: 重庆大学, 2007.

    DONG Chengfeng. Study on temperature sensitivity of steel-slag conductive concrete[D]. Chongqing: Chongqing University, 2007(in Chinese).
    [56] WANG L, ASLANI F. A review on material design, performance, and practical application of electrically conductive cementitious composites[J]. Construction and Building Materials,2019,229:116892. doi:  10.1016/j.conbuildmat.2019.116892
    [57] VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science,2006,128:37-46.
    [58] 赵莉莉. 碳材料增强水泥基复合材料热电性能研究[D]. 西安: 西安建筑科技大学, 2017.

    ZHAO Lili. Study on thermoelectric properties of carbon materials reinforced cement-based composites[D]. Xi’an: Xi’an University of Architecture and Technology, 2017(in Chinese).
    [59] CAO J, CHUNG D D L. Role of moisture in the Seebeck effect in cement-based materials[J]. Cement and Concrete Research,2005,35(4):810-812. doi:  10.1016/j.cemconres.2004.05.036
    [60] 魏剑, 薛飞, 王佳敏, 等. 低温循环载荷对碳纤维增强硫铝酸盐水泥基复合材料热电性能的影响研究[J]. 硅酸盐通报, 2018, 37(11):3503-3509,3521.

    WEI Jian, XUE Fei, WANG Jiamin, et al. Effect of low temperature cyclic loads on thermoelectric properties of carbon fiber reinforced sulphoaluminate cementitious composites[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3503-3509,3521(in Chinese).
    [61] YANG Y, LAN J, LI X. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Materials Science and Engineering A,2004,380(1-2):378-383. doi:  10.1016/j.msea.2004.03.073
    [62] IBARRA Y S D, GAITERO J J, ERKIZIA E, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions[J]. Physica Status Solidi,2006,203(6):1076-1081. doi:  10.1002/pssa.200566166
    [63] ZUO J, YAO W, QIN J, et al. Measurements of thermoelectric behavior and microstructure of carbon nanotubes/carbon fiber-cement based composite[J]. Key Engineering Materials,2011,492:242-245. doi:  10.4028/www.scientific.net/KEM.492.242
    [64] LIEW K M, KAI M F, ZHANG L W. Carbon nanotube reinforced cementitious composites: An overview[J]. Composites Part A: Applied Science and Manufacturing,2016,91:301-323. doi:  10.1016/j.compositesa.2016.10.020
    [65] CHENG X, WANG S, LU L, et al. Influence of preparation process on piezo-conductance effect of carbon fiber sulfoaluminate cement composite[J]. Journal of Composite Materials,2011,45(20):2033-2037. doi:  10.1177/0021998311407990
    [66] LIU M, QIN X Y. Enhanced thermoelectric performance through energy-filtering effects in nanocomposites dispersed with metallic particles[J]. Applied Physics Letters,2012,101(13):132103. doi:  10.1063/1.4755768
    [67] 薛飞. 环境载荷对膨胀石墨/碳纤维增强水泥基复合材料热电性能的影响研究[D]. 西安: 西安建筑科技大学, 2018.

    XUE Fei. Effect of environmental load on thermoelectric properties of expanded graphite/carbon fiber reinforced cement composites[D]. Xi’an: Xi’an University of Architecture and Technology, 2018(in Chinese).
    [68] TZOUNIS L. Organic thermoelectrics and thermoelectric generators (TEGs)[M]. London: IntechOpen, 2019.
    [69] GAURAV K, PANDEY S K. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials[J]. Journal of Renewable and Sustainable Energy,2017,9(1):014701. doi:  10.1063/1.4976125
  • [1] 高晓东, 杨卫民, 程礼盛, 丁玉梅, 谭晶.  导电玻璃纤维及其功能复合材料研究进展, 复合材料学报.
    [2] 王江, 翟玉玲, 马明琰, 姚沛滔, 李龙.  基于径向基神经网络模型预测CuO-ZnO/(乙二醇-水)混合纳米流体导热系数, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.001
    [3] 王娟, 张法明, 商彩云, 张彬.  石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能, 复合材料学报.
    [4] 杨涛, 刘润爱, 王文先, 连俊杰, 郑凡林, 陈洪胜.  热轧高含量B4C颗粒增强Al基复合材料的成形性能, 复合材料学报.
    [5] 包永洁, 黄成建, 陈玉和, 戴月萍.  碳纤维纸木质电热复合材料面层电热效果的纵向尺寸效应, 复合材料学报.
    [6] 李斌, 常飞, 肖尧, 李曙林, 孙晋茹.  碳纤维增强银粉改性树脂复合材料的雷击损伤效应, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191118.002
    [7] 王新玲, 杨广华, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系, 复合材料学报.
    [8] 张聪, 余志辉, 韩世诚, 华渊.  混杂纤维增强应变硬化水泥基复合材料的压缩本构关系, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190823.002
    [9] 张聪, 夏超凡, 袁振, 李志华.  混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191114.001
    [10] 董晓星, 金明生, 王礼明, 康杰, 朱栋杰, 计时鸣.  用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.003
    [11] 王继华, 柳军旺, 王春锋, 王永亮, 韩志东.  聚偏氟乙烯基复合材料的制备及介电性能, 复合材料学报.
    [12] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [13] 王作虎, 杨菊, 崔宇强, 申书洋.  碳纤维增强树脂复合材料加固钢筋混凝土柱抗震性能的尺寸效应试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200212.001
    [14] 史俊伟, 刘松平, 荀国立, 杨刚.  孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191008.001
    [15] 王腾蛟, 许金余, 朱从进, 任韦波.  灰粉比对苯丙乳液基水泥复合材料静态力学性能及破坏形态的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200212.002
    [16] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [17] 王新玲, 陈永杰, 钱文文, 李可, 朱俊涛.  高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验, 复合材料学报.
    [18] 朱俊涛, 赵亚楼, 李燚, 王新玲.  高强不锈钢绞线网与工程水泥基复合材料黏结锚固性能试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191010.001
    [19] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [20] 王春红, 左祺, 支中祥, 徐磊, SARANIZakaria, SHERAZHussain Siddique Yousfani.  聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响, 复合材料学报.
  • 加载中
图(15) / 表ll (2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  72
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 录用日期:  2020-04-19
  • 网络出版日期:  2020-04-24
  • 刊出日期:  2020-09-17

目录

    /

    返回文章
    返回