留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干共混法控制柔性模板上金属薄膜微裂纹形貌

田波 叶向东

田波, 叶向东. 基于干共混法控制柔性模板上金属薄膜微裂纹形貌[J]. 复合材料学报, 2020, 37(12): 3111-3118. doi: 10.13801/j.cnki.fhclxb.20200319.002
引用本文: 田波, 叶向东. 基于干共混法控制柔性模板上金属薄膜微裂纹形貌[J]. 复合材料学报, 2020, 37(12): 3111-3118. doi: 10.13801/j.cnki.fhclxb.20200319.002
TIAN Bo, YE Xiangdong. Based on dry blending method to control the micro-cracks morphology of metal film on flexible template[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3111-3118. doi: 10.13801/j.cnki.fhclxb.20200319.002
Citation: TIAN Bo, YE Xiangdong. Based on dry blending method to control the micro-cracks morphology of metal film on flexible template[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3111-3118. doi: 10.13801/j.cnki.fhclxb.20200319.002

基于干共混法控制柔性模板上金属薄膜微裂纹形貌

doi: 10.13801/j.cnki.fhclxb.20200319.002
基金项目: 国家自然科学基金面上项目(51475353);陕西省教育厅重点实验室科学研究计划项目(17JS072)
详细信息
    通讯作者:

    叶向东,博士,副教授,硕士生导师,研究方向为微纳米制造及其工艺研究 E-mail:yexiangd@xauat.edu.cn

  • 中图分类号: O484.5

Based on dry blending method to control the micro-cracks morphology of metal film on flexible template

  • 摘要: 以500 nm的SiO2纳米粒子为填料,聚二甲基硅氧烷(PDMS)为包覆纳米粒子的聚合物,通过一种新颖的干共混法制备了SiO2纳米粒子含量高达83.8wt%的SiO2/PDMS柔性模板。所制备柔性模板的弹性模量为16.58 MPa,热膨胀系数为96×10−6/℃,较SiO2直接掺入PDMS中湿共混制备的纯PDMS柔性模板,弹性模量提高了91.56%,热膨胀系数降低了69.23%,且该柔性模板具有良好的透明度。最后,在柔性模板表面采用磁控溅射法沉积银薄膜,利用SEM和AFM对银薄膜表面形貌进行表征。结果显示,银薄膜表面光滑,粗糙度很小,且具有良好稳定性。干共混法制备的柔性模板有效抑制了金属薄膜微裂纹的产生,为制造导电性良好的电极及大面积的金属薄膜提供了新方案。

     

  • 图  1  干共混法制备SiO2/聚二甲基硅氧烷(PDMS)柔性模板实验过程

    Figure  1.  Steps in the experimental procedure for the preparation of the SiO2/polydimethylsiloxane (PDMS) flexible template by dry blending

    图  2  SiO2/PDMS柔性模板表面形貌

    Figure  2.  Surface morphology of the SiO2/PDMS flexible template

    图  3  SiO2/PDMS柔性模板的应力-应变曲线

    Figure  3.  Stress-strain curves of the SiO2/PDMS flexible template

    图  4  SiO2/PDMS柔性模板的弹性模量

    Figure  4.  Elastic modulus of the SiO2/PDMS flexible template

    图  5  SiO2/PDMS柔性模板的应变-温度曲线

    Figure  5.  Strain-temperature curves of the SiO2/PDMS flexible template

    图  6  SiO2/PDMS柔性模板的热膨胀系数(CTE)

    Figure  6.  Coefficient of thermal expansion (CTE) of the SiO2/PDMS flexible template

    图  7  SiO2/PDMS柔性模板的透明度

    Figure  7.  Transmittance of the SiO2/PDMS flexible templates

    图  8  两种SiO2/PDMS柔性模板上银薄膜微裂纹形貌和表面起伏形貌

    Figure  8.  Micro crack morphologies and surface undulations morphologies of silver film on two SiO2/PDMS flexible templates

    图  9  弯曲后的干共混柔性模板上银薄膜稳定性

    Figure  9.  Stability of silver film on dry-blended SiO2/PDMS flexible template after bending

  • [1] HAH J, SULKIS M, REN C, et al. Moisture barrier, mechanical, and thermal properties of PDMS-PIB blends for solar photovoltaic (PV) module encapsulant[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, 2019: 1977-1982.
    [2] PARK D, OH T S. Flip chip process on the local stiffness-variant stretchable substrate for stretchable electronic packages[J]. Journal of the Microelectronics and Packaging Society,2018,25(4):155-161.
    [3] OJUROYE O, TORAH R, BEEBY S. Modified PDMS packaging of sensory e-textile circuit microsystems for improved robustness with washing[J]. Microsystem Technologies,2019(7):1-18.
    [4] CHEN C M, YANG S. Wrinkling instabilities in polymer films and their applications[J]. Polymer International,2012,61(7):1041-1047. doi: 10.1002/pi.4223
    [5] YOO B H. Flexible display substrate, manufacturing method thereof, and flexible display device having the same: USA, 10, 117, 306[P]. 2018-10-30.
    [6] YU S, SUN Y, ZHANG X, et al. Hierarchical wrinkles and oscillatory cracks in metal films deposited on liquid stripes[J]. Physical Review E,2019,99(6):062802. doi: 10.1103/PhysRevE.99.062802
    [7] BAETENS T, PALLECCHI E, THOMY V, et al. Metallized SU-8 thin film patterns on stretchable PDMS[J]. Journal of Micromechanics and Microengineering,2019,29(9):095009. doi: 10.1088/1361-6439/ab307f
    [8] TAI Y, CHEN T, LUBINEAU G. A sandwiched/cracked flexible film for multithermal monitoring and switching devices[J]. ACS Applied Materials & Interfaces,2017,9(37):32184-32191.
    [9] GRAUDEJUS O, GORRN P, WAGNER S. Controlling the morphology of gold films on poly (dimethylsiloxane)[J]. ACS Applied Materials & Interfaces,2010,2(7):1927-1933.
    [10] MOON M W, LEE S H, SUN J Y, et al. Controlled formation of nanoscale wrinkling patterns on polymers using focused ion beam[J]. Scripta Materialia,2007,57(8):747-750. doi: 10.1016/j.scriptamat.2007.06.043
    [11] LEE S Y, PARK K R, KANG S, et al. Selective crack suppression during deformation in metal films on polymer substrates using electron beam irradiation[J]. Nature Communications,2019,10(1):1-8. doi: 10.1038/s41467-018-07882-8
    [12] MENG Y, LI Z B., CHEN X, et al. Reducing wrinkles and cracks of metal films on PDMS substrate by hexane extraction and oxygen plasma etching[J]. Microelectronic Engineering,2014,130:8-12. doi: 10.1016/j.mee.2014.08.007
    [13] GUO L, DEWEERTH S P. An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate[J]. Small,2010,6(24):2847-2852. doi: 10.1002/smll.201001456
    [14] CHOU N, JEONG J, KIM S. Crack-free and reliable lithographical patterning methods on PDMS substrate[J]. Journal of Micromechanics and Microengineering,2013,23(12):125035. doi: 10.1088/0960-1317/23/12/125035
    [15] ZHANG S, YANG M, JIN M, et al. Mechanism of solder joint cracks in anisotropic conductive films bonding and solutions: Delaying hot-bar lift-up time and adding silica fillers[J]. Metals,2018,8(1):42. doi: 10.3390/met8010042
    [16] LIU J, ZONG G, HE L, et al. Effects of fumed and mesoporous silica nanoparticles on the properties of sylgard 184 polydimethylsiloxane[J]. Micromachines,2015,6(7):855-864. doi: 10.3390/mi6070855
    [17] TOPPER T, OSMANI B, MULLER B. Polydimethylsiloxane films engineered for smart nanostructures[J]. Microelectronic Engineering,2018,194:1-7. doi: 10.1016/j.mee.2018.02.029
    [18] PLECHINGER G, CASTELLANOS-GOMEZ A, BUSCEMA M, et al. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate[J]. 2D Materials,2015,2(1):015006. doi: 10.1088/2053-1583/2/1/015006
    [19] RIEHLE N, THUDE S, GOTZ T, et al. Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application[J]. European Polymer Journal,2018,101:190-201. doi: 10.1016/j.eurpolymj.2018.02.029
    [20] SHABANA Y M, WANG G T. Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method[J]. Acta Mechanica,2013,224(6):1213-1224. doi: 10.1007/s00707-013-0868-4
    [21] 宗国歌. 二氧化硅纳米粒子掺杂对PDMS性能影响研究[D]. 大连: 大连理工大学, 2015.

    ZONG G G. Effects of doped silica nanoparticles on the properties of PDMS[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [22] CAMENZIND A, SCHWEIZER T, SZTUCKI M, et al. Structure & strength of silica-PDMS nanocomposites[J]. Polymer,2010,51(8):1796-1804. doi: 10.1016/j.polymer.2010.02.030
    [23] 李晓雷, 张驰, 王萌, 等. 新型MoSi2-Al2O3-SiO2系耐高温高发射涂层的热膨胀系数调控[J]. 稀有金属材料与工程, 2015, 44(S1):200-203.

    LI X L, ZHANG C, WANG M, et al. Preparation and thermal expansion coefficient control of MoSi2-Al2O3-SiO2 coating with high temperature resistance and emissivity[J]. Rare Metal Materials and Engineering,2015,44(S1):200-203(in Chinese).
    [24] 侯秀斌, 薛志欣, 夏延致. TiO2对琼胶-κ-卡拉胶膜性能的影响[J]. 复合材料学报, 2018, 35(12):3450-3457.

    HOU X B, XUE Z X, XIA Y Z. Effect of TiO2 on properties of agar-κ-carrageenan films[J]. Acta Materiae Compositae Sinica,2018,35(12):3450-3457(in Chinese).
    [25] KO Y H, LEE S H, LEEM J W, et al. High transparency and triboelectric charge generation properties of nano-patterned PDMS[J]. RSC Advances,2014,4(20):10216-10220. doi: 10.1039/c3ra47199c
    [26] STOJANOVIC D B, BRAJOVIC L, OBRADOVIC V, et al. Hybrid acrylic nanocomposites with excellent transparency and hardness/toughness balance[J]. Progress in Organic Coatings,2020,139:105437. doi: 10.1016/j.porgcoat.2019.105437
  • 加载中
图(9)
计量
  • 文章访问数:  969
  • HTML全文浏览量:  339
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 录用日期:  2020-03-17
  • 网络出版日期:  2020-03-20
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回