留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响

李传习 李游 高有为 胡正 刘一鸣

李传习, 李游, 高有为, 等. 纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10): 2619-2635. doi: 10.13801/j.cnki.fhclxb.20200319.001
引用本文: 李传习, 李游, 高有为, 等. 纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10): 2619-2635. doi: 10.13801/j.cnki.fhclxb.20200319.001
LI Chuanxi, LI You, GAO Youwei, et al. Effect of nano-SiO2 mass fraction on the interface performance of glued carbon fiber reinforced polymer composite-steel specimen[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2619-2635. doi: 10.13801/j.cnki.fhclxb.20200319.001
Citation: LI Chuanxi, LI You, GAO Youwei, et al. Effect of nano-SiO2 mass fraction on the interface performance of glued carbon fiber reinforced polymer composite-steel specimen[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2619-2635. doi: 10.13801/j.cnki.fhclxb.20200319.001

纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响

doi: 10.13801/j.cnki.fhclxb.20200319.001
基金项目: 国家自然科学基金(51778069;51708047;51978081);国家重点基础研究发展计划(973计划)项目(2015CB057701;2015CB057702);广东省交通厅科技项目(201602010);湖南省研究生科研创新重点项目(CX20190635);桥梁工程安全控制教育部重点实验室开放基金项目(16BCX12)
详细信息
    通讯作者:

    李游,博士,研究方向为钢结构加固及土木工程新材料、新技术 E-mail:liyou_2@163.com

  • 中图分类号: TB332

Effect of nano-SiO2 mass fraction on the interface performance of glued carbon fiber reinforced polymer composite-steel specimen

  • 摘要: 胶黏剂力学性能对碳纤维增强树脂复合材料(CFRP)加固钢结构的界面黏结性能影响显著。基于研制的胶黏剂配比,分析了不同纳米SiO2质量分数对胶黏剂常温固化后基本力学性能及微观结构的影响,制作了31个CFRP板-钢板双搭接试件,对其进行了常温固化后的承载能力、有效黏结长度、传力模式、黏结-滑移本构等试验研究,得出了纳米SiO2质量分数对CFRP板-钢板搭接试件界面黏结性能的影响规律,并与常用商品胶黏剂进行了比较。研究结果表明:随纳米SiO2质量分数的增加,胶黏剂应力-应变关系由线性转变为非线性,应变能、断裂伸长率及剪切强度分别最高提升了292.10%、202.88%和133.12%。微观结构分析表明纳米SiO2的添加使断面粗糙度显著增加,形成了密集的塑性空穴,产生了更多的微裂纹,使胶黏剂的韧性大幅度提高。当纳米SiO2质量分数从0增至1wt%,搭接试件破坏模式由界面破坏逐渐变为CFRP板层离破坏。掺入纳米SiO2能显著增加搭接试件的极限承载力(提升256.96%)及界面有效黏结长度(提升3倍),提高CFRP表面的应变及界面剪应力峰值。纳米SiO2质量分数为0与0.5wt%的搭接试件的黏结-滑移曲线为双线性三角形模型,纳米SiO2质量分数为1wt%的搭接试件的黏结-滑移曲线为三线性梯形模型,黏结界面韧性大幅提升。CFRP-钢界面承载能力受胶黏剂拉伸强度与断裂伸长率的双重影响,非线性高强度(即具有较高应变能)胶黏剂对应的CFRP-钢搭接接头具有更好的界面性能。

     

  • 图  1  胶黏剂拉伸试样的尺寸

    Figure  1.  Dimensions of adhesive tensile specimens

    图  2  胶黏剂剪切试样的尺寸

    Figure  2.  Dimensions of adhesive shear specimens

    图  4  胶黏剂试样拉伸试验

    Figure  4.  Tensile test of adhesive specimen

    图  5  胶黏剂试样剪切试验

    Figure  5.  Shear test of adhesive specimen

    图  3  CFRP-钢双搭接接头的形式及应变片布置

    Figure  3.  CFRP-steel double lap joint form and strain gauge arrangement

    图  6  CFRP-钢双搭接试件拉伸试验

    Figure  6.  Tensile test of CFRP-steel double lap test piece

    图  7  胶黏剂拉伸名义应力-应变曲线

    Figure  7.  Tensile nominal stress-strain curves of adhesive specimen

    图  8  胶黏剂剪切应力-应变曲线

    Figure  8.  Shear stress-strain curves of adhesive specimen

    图  9  胶黏剂基本力学性能随纳米SiO2掺量变化

    Figure  9.  Basic mechanical properties of adhesives varied with the amount of nano- SiO2

    图  10  胶黏剂拉伸断面SEM图像

    Figure  10.  SEM images of the tensile section of the adhesive

    图  11  CFRP-钢界面破坏模式

    Figure  11.  Interface failure modes of CFRP-steel

    图  12  CFRP-钢双搭接试件荷载-位移曲线

    Figure  12.  Load-displacement curves of CFRP-steel double lap test piece

    图  13  ZR14胶黏剂的CFRP-钢试件极限荷载与黏结长度之间的关系

    Figure  13.  Relationship between ultimate load and bond length of CFRP-steel specimens of ZR14 adhesive

    图  14  CFRP的表面应变分布

    Figure  14.  Strain distribution of CFRP surface

    图  15  CFRP-钢界面剪应力分布

    Figure  15.  Shear stress distribution at CFRP-steel interface

    图  16  CFRP-钢界面黏结滑移本构

    Figure  16.  Bond-slip constitutive of CFRP-steel interface

    图  17  CFRP-钢界面剪应力峰值的预测值与实验值比较

    Figure  17.  Comparison between the predicted and tested maximum bond stress of CFRP-steel interface

    图  18  CFRP-钢界面断裂能的预测值与实验值比较

    Figure  18.  Comparison between the predicted and tested interfacial fracture energy of CFRP-steel interface

    图  19  CFRP-钢搭接试件极限承载力的预测值与实验值比较

    Figure  19.  Comparison between the predicted and tested ultimate loads of CFRP-steel lap joint

    图  20  本文胶黏剂与商品胶黏剂的应力-应变曲线

    Figure  20.  Stress and strain curves of adhesives developed in this paper and commercial adhesives

    图  21  CFRP-钢界面黏结-滑移本构模型的比较

    Figure  21.  Comparison of bond-slip constitutive models at CFRP-steel interface

    表  1  胶黏剂中纳米SiO2与环氧树脂质量

    Table  1.   Mass of nano-SiO2 and epoxy resin in adhesive specimen

    NumberZR10ZR11ZR12ZR13ZR14ZR15
    Epoxy resin/g 120 120 120 120 120 120
    Nano-SiO2/g 0 0.3 0.6 0.9 1.2 1.8
    下载: 导出CSV

    表  2  碳纤维增强树脂复合材料(CFRP)板及钢板材料性能

    Table  2.   Material properties of carbon fiber reinforced polymer (CFRP) plate and steel plate

    Material propertyCFRP laminateSteel plate
    Thickness/mm 1.4 12
    Width/mm 50 50
    Tensile strength/MPa 2 263 514
    Elasticity modulus/GPa 161.2 206
    Elongation at break/% 1.65
    下载: 导出CSV

    表  3  纳米SiO2质量分数对CFRP-钢双搭接试件试验结果影响

    Table  3.   Effect of the mass fraction of nano-SiO2 on test results of CFRP-steel double lap test pieces

    Specimen numberTa/mmLimit displacement/mmUltimate load/kNAverage bond strength/MPaFailure mode
    ${D_{{\rm{max}}} }$Average${P_{{\rm{max}}} }$Average${\overline p _{\max }}$Average
    ZR10-120-1 1.11 0.89 0.88 45.42 44.68 3.79 3.73 a
    ZR10-120-2 1.09 0.76 37.88 3.16 a
    ZR10-120-3 1.12 1.00 50.74 4.23 b
    ZR11-120-1 1.12 1.25 1.11 67.52 57.55 5.63 4.80 a
    ZR11-120-2 1.14 1.11 54.77 4.56 b
    ZR11-120-3 1.10 0.96 50.37 4.20 b,d
    ZR12-120-1 1.09 1.96 2.11 100.75 102.31 8.40 8.53 d
    ZR12-120-2 1.13 1.90 90.25 7.52 d
    ZR12-120-3 1.12 2.37 109.73 9.14 d
    ZR12-120-4 1.11 2.21 108.51 9.04 d
    ZR13-120-1 1.08 2.64 2.55 128.17 121.46 10.68 10.12 d
    ZR13-120-2 1.10 2.45 113.74 9.48 d
    ZR13-120-3 1.13 2.56 122.51 10.21 d
    ZR14-120-1 1.12 3.52 3.11 146.86 159.49 12.24 13.29 d
    ZR14-120-2 1.11 3.13 157.71 13.14 d
    ZR14-120-3 1.11 3.59 173.89 14.49 d
    ZR15-120-1 1.12 0.92 0.89 43.93 42.86 3.66 3.57 b
    ZR15-120-2 1.14 0.94 45.34 3.78 b
    ZR15-120-3 1.15 0.82 39.30 3.28 a
    Notes: Specimen number ZR**-A-B: ZR** indicates type of adhesive, the character A indicates bond length of specimen, and the character B indicates the serial number of specimens in each group; Ta—Thickness of adhesive layer; Dmax—Limit displacement. It represents variation of the distance between A1 and B1 points when specimens failed, as shown in Fig.3; Pmax—Ultimate load; ${\overline p _{\max }}$—Average bond strength; Failure mode—a indicates CFRP and adhesive debonding failure; b indicates steel and adhesive debonding failure; d indicates CFRP delamination.
    下载: 导出CSV

    表  4  CFRP -钢界面剪应力峰值的预测值与实验值比较

    Table  4.   Comparison between the predicted and tested maximum shear stress of CFRP-steel interface

    SpecimenEpoxyfa/MPaPrediction result/MPaTest result/MPaPrediction result/test result
    ZR12-120-1 ZR12 45.28 22.64 26.26 0.86
    ZR12-120-2 ZR12 45.28 22.64 23.80 0.95
    ZR12-120-3 ZR12 45.28 22.64 19.98 1.13
    ZR14-120-1 ZR14 44.09 22.05 22.97 0.96
    ZR14-120-2 ZR14 44.09 22.05 22.53 0.98
    ZR14-120-3 ZR14 44.09 22.05 25.51 0.86
    C120[34] Araldite 2011 (CNT) 52.40 26.20 23.80 1.10
    P120[34] Araldite 2011 (pure) 40.00 20.00 21.80 0.92
    T1-1[3] T1 50.00 25.00 25.37 0.99
    Tc-1[3] Tc 25.69 12.85 11.79 1.09
    D-NM-T1 –I[35] Araldite 420 21.46 10.73 11.00 0.98
    Average 0.984
    Variance 0.008
    Note: fa—Tensile strength of adhesive.
    下载: 导出CSV

    表  5  CFRP-钢界面断裂能的预测值与实验值比较

    Table  5.   Comparison between the predicted and tested fracture energy of CFRP-steel interface

    SpecimenStrain energy
    $\omega $/MPa
    Thickness of
    adhesive/mm
    Prediction result /
    (N·mm−1)
    Test result /
    (N·mm−1)
    Prediction result/
    test result
    ZR12-120 0.06 1.12 2.42 3.19 0.76
    ZR14-120 0.12 1.11 6.74 6.70 1.01
    A350-0.5-1[34] 0.165 0.52 7.59 6.24 1.22
    A350-1.0-1[34] 0.165 0.99 10.26 10.19 1.01
    A350-2.0-1[34] 0.165 1.90 13.92 13.79 1.01
    A-NM-T1-I[35] 0.0405 1.07 1.32 1.05 1.25
    A-NM-T1.5[35] 0.0405 1.53 1.56 1.38 1.13
    A-NM-T2[35] 0.0405 2.06 1.79 1.78 1.01
    C-MM-T1[35] 0.1475 1.04 8.89 10.35 0.86
    Average 1.048
    Variance 0.113
    下载: 导出CSV

    表  6  本文研制的胶黏剂与商品胶黏剂的主要力学性能指标

    Table  6.   Main mechanical properties of adhesives developed in this paper and commercial adhesives

    NameZR12ZR14Sika330Araldite420Sika30Lica131
    Tensile strength/MPa 45.28 44.09 24.40 30.50 25.30 26.60
    Elongation at break/% 2.38 4.21 0.54 4.09 0.22 0.69
    Elastic modulus/MPa 2 217 1 544 4 870 2 410 12 130 3 990
    Strain energy/(N·mm-2) 0.05784 0.11669 0.00706 0.09965 0.00326 0.01021
    下载: 导出CSV

    表  7  CFRP-钢界面黏结-滑移本构参数的比较

    Table  7.   Comparison of bond-slip constitutive parameters of CFRP-steel interface

    parameterZR14Sika330Araldite420Sika30Lica131HJ-69EH
    ${\tau _{\rm{f}}}$/MPa 22.34 14.50 22.00 8.54 17.00 25.98
    ${\delta _{\rm{f}}}$/mm 0.419 0.28 0.40 0.29 0.26 0.40
    $K$/(MPa·mm−1) 227.96 59.00 57.89 47.44 65.38 355.00
    ${G_{\rm{f}}}$/(MPa·mm−1) 6.691 1.94 4.40 1.20 2.21 6.87
    Notes: τf—Peak shear stress; δf—Limit slip; K—Interfacial stiffness; Gf—Interfacial fracture energy.
    下载: 导出CSV
  • [1] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30(3):122-131.

    LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport,2017,30(3):122-131(in Chinese).
    [2] LI C X, KE L, HE J et al. Effects of mechanical properties of adhesive and CFRP on the bond behavior in CFRP-strengthened steel structures[J]. Composite Structures,2019,211:163-174. doi: 10.1016/j.compstruct.2018.12.020
    [3] HE J, XIAN G J. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures,2016,153:12-20. doi: 10.1016/j.compstruct.2016.05.100
    [4] 李传习, 柯璐, 陈卓异, 等. CFRP/钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12):3534-3546.

    LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel[J]. Acta Material Composite Sinica,2018,35(12):3534-3546(in Chinese).
    [5] ALAA A M, RIADH A M. Performance of CFRP-steel joints enhanced with bi-directional CFRP fabric[J]. Construction and Building Materials,2019,197:72-82. doi: 10.1016/j.conbuildmat.2018.11.235
    [6] 李传习, 罗南海, 柯璐, 等. 胶膜连接碳纤维增强树脂复合材料板-钢搭接接头室温条件的力学性能试验[J]. 复合材料学报, 2020, 37(2):318-327.

    LI Chuanxi, LUO Nnahai, KE Lu, et al. Experimental study on the carbon fiber reinforced plomyer composite laminate-steel lap joints connected with a film adhesive at room temperature[J]. Acta Materiae Compositae Sinica,2020,37(2):318-327(in Chinese).
    [7] FERNANDO T, YU D, TENG J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [8] PANG Y Y, WU G, WANG H T, et al. Experimental study on the bond behavior of CFRP-steel interfaces under quasi-static cyclic loading[J]. Thin-Walled Structures,2019,140:426-437. doi: 10.1016/j.tws.2019.03.060
    [9] TANG H Y, DENG X Z, LIN Z B, et al. Analytical and experimental investigation on bond behavior of CFRP-to-stainless steel interface[J]. Composite Structures,2019,212:94-105. doi: 10.1016/j.compstruct.2019.01.007
    [10] YANG YM, HUGO B, CARLOS C, et al. Bond characteristics of CFRP-to-steel joints[J]. Journal of Constructional Steel Research,2017,138:401-419. doi: 10.1016/j.jcsr.2017.08.001
    [11] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures,2018,184:1204-1214. doi: 10.1016/j.compstruct.2017.10.033
    [12] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧黏结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3):642-649.

    LI Chuanxi, CAO Xianhui, KE Lu, et al. Effects of high temperatures on the mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials,2020,23(3):642-649(in Chinese).
    [13] 薛书凯, 张炜, 侯卫国. 环氧树脂增韧新途径及增韧机理的研究[J]. 热固性树脂, 2005(5):36-40. doi: 10.3969/j.issn.1002-7432.2005.05.011

    XUE Shukai, ZHANG Wei, HOU Weiguo. The study on novol toughening methods and mechanism of epoxy resin[J]. Thermosetting Resin,2005(5):36-40(in Chinese). doi: 10.3969/j.issn.1002-7432.2005.05.011
    [14] GARIMA T. Effect of carboxyl-terminated poly (butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin[J]. Materials Science and Engineering A,2007,443(1-2):262-269. doi: 10.1016/j.msea.2006.09.031
    [15] 黄月文, 刘伟区, 罗广建. 聚氨酷改性环氧胶粘剂的研究[J]. 化学与粘合, 2004, 30(2):76-78. doi: 10.3969/j.issn.1001-0017.2004.02.007

    HUANG Yuewen, LIU Weiqu, LUO Guangjian. Polyurethane modified epoxy resin adhesives[J]. Chemistry and Adhesion,2004,30(2):76-78(in Chinese). doi: 10.3969/j.issn.1001-0017.2004.02.007
    [16] ZHOU H Z, LIU H Y, ZHOU H M, et al. On adhesive properties of nano-silica/epoxy bonded single-lap joints[J]. Materials and Design,2016,95:212-218. doi: 10.1016/j.matdes.2016.01.055
    [17] 卫保娟, 肖潭, 李雄俊, 等. 石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2012, 29(5):53-60.

    WEI Baojuan, XIAO Tan, LI Xiongjun, et al. Preparation and properties of graphene and MWCNTs reinforced epoxy resin composites[J]. Acta Material Composite Sinica,2012,29(5):53-60(in Chinese).
    [18] 黄凯兵, 任丹凤, 王建, 等. 增强材料的微观结构对环氧胶粘剂性能的影响[J]. 湖南大学学报(自然科学版), 2010, 37(12):61-65.

    HUANG Kaibing, REN Danfeng, WANG Jian, et al. Study of the performance of epoxy adhesive modified by reinforced material with different microstructures[J]. Journal of Hu'nan University(Natural Sciences),2010,37(12):61-65(in Chinese).
    [19] 李孟宇, 马雅婷, 赵蕾, 等. 纳米SiO2改性环氧树脂复合材料的热稳定性及使用寿命[J]. 复合材料学报, 2017, 34(11):2421-2427.

    LI Mengyu, MA Yating, ZHAO Lei, et al. Thermal stability and service life of nano-SiO2 modified epoxy composites[J]. Acta Material Composite Sinica,2017,34(11):2421-2427(in Chinese).
    [20] SALOM C, PROLONGO M G, TORIBIOA A, et al. Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites[J]. International Journal of Adhesion and Adhesives, 2017, 84: 119-125.
    [21] STEPHAN S. Epoxy resins modified with elastomers and surface-modified silica nanoparticles[J]. Polymer,2013,54:4790-4797. doi: 10.1016/j.polymer.2013.06.011
    [22] FERREIRA F V, BRITO F S, FRANCESCHI W, et al. Functionalized graphene oxide as reinforcement in epoxy based nanocomposites[J]. Surfaces and Interfaces,2018,10:100-109. doi: 10.1016/j.surfin.2017.12.004
    [23] SOUMYA V, CHANDRA S T, ATANU S et al. Graphene oxide epoxy (GO-xy): GO as epoxy adhesive by interfacial reaction of functionalities[J]. Advanced Materials Interfaces,2018,5(2):1-7.
    [24] 黄传军, 张以河, 付绍云, 等. SiO2/环氧树脂基纳米复合材料的室温和低温力学性能[J]. 复合材料学报, 2004, 21(4):77-81. doi: 10.3321/j.issn:1000-3851.2004.04.016

    HUANG Chuanjun, ZHANG Yihe, FU Shaoyun, et al. Mechanical properties of epoxy composites filled with SiO2 nano-particles at room and cryogenic temp[J]. Acta Material Composite Sinica,2004,21(4):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.04.016
    [25] HSIEH T H, KINLOCH A J, MASANIA K, et al. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles[J]. Polymer,2010,51:6284-6294. doi: 10.1016/j.polymer.2010.10.048
    [26] RAZAVIA S M J, AYATOLLAHIA M R, NEMATI GIVA A, et al. Single lap joints bonded with structural adhesives reinforced with a mixture of silica nanoparticles and multi walled carbon nanotubes[J]. International Journal of Adhesion and Adhesives,2018,80:76-86. doi: 10.1016/j.ijadhadh.2017.10.007
    [27] AKPINAR I A, GÜLTEKIN K, AKPINAR S, et al. Research on strength of nanocomposite adhesively bonded composite joints[J]. Composites Part B: Engineering,2017,126:143-152. doi: 10.1016/j.compositesb.2017.06.016
    [28] SARAÇA I, ADINA H, TEMIZB S. Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles[J]. Composites Part B: Engineering,2018,155:92-103. doi: 10.1016/j.compositesb.2018.08.006
    [29] JUN H H, JIN W L, LEE B, et al. Chemical effects of organo-silanized SiO2 nanofillers on epoxy adhesives[J]. Journal of Industrial and Engineering Chemistry,2017,54:184-189. doi: 10.1016/j.jiec.2017.05.032
    [30] ASTM. Standard test method for tensile properties for plastics: ASTM D638—10[S]. West Conshohocken: ASTM International, 2010.
    [31] ISO. Adhesives-Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: ISO 4587:2003[S]. Pennsylvania: IX-ISO, 2003.
    [32] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528—96[S]. West Conshohocken: ASTM, 2008.
    [33] NAKABA K, KANAKUBO T, FURUTA T, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. Structural Journal,2001,98(3):359-367.
    [34] KORAYEM AH, LI C Y, ZHANG Q H et al. Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface[J]. Composites Part B: Engineering,2015,79:95-104. doi: 10.1016/j.compositesb.2015.03.063
    [35] FERNANDO N D. Bond behavior and debonding failures in CFRP-strengthened steel members[D]. Hong Kong: The Hong Kong Polytechnic University, 2010.
    [36] XIA S, TENG J G. Behavior of FRP-to-steel bonded joints[C]. Proceedings of the International Symposium on Bond Behavior of FRP in Structures (BBFS 2005), 2005: 411-418.
    [37] DEHGHANI E, DANESHJOO F, AGHAKOUCHAK A, et al. A new bond-slip model for adhesive in CFRP–steel composite systems[J]. Engineering Structures,2012,34:447-454. doi: 10.1016/j.engstruct.2011.08.037
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  943
  • HTML全文浏览量:  305
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-01-05
  • 网络出版日期:  2020-03-19
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回