留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字图像相关方法辅助的IM7/8552碳纤维/环氧树脂复合材料单向带层合板沿厚度方向非线性本构参数识别

贺体人 刘刘 徐吉峰

贺体人, 刘刘, 徐吉峰. 数字图像相关方法辅助的IM7/8552碳纤维/环氧树脂复合材料单向带层合板沿厚度方向非线性本构参数识别[J]. 复合材料学报, 2021, 38(1): 177-185. doi: 10.13801/j.cnki.fhclxb.20200316.001
引用本文: 贺体人, 刘刘, 徐吉峰. 数字图像相关方法辅助的IM7/8552碳纤维/环氧树脂复合材料单向带层合板沿厚度方向非线性本构参数识别[J]. 复合材料学报, 2021, 38(1): 177-185. doi: 10.13801/j.cnki.fhclxb.20200316.001
HE Tiren, LIU Liu, XU Jifeng. Digital image correlation aided method for identification of nonlinear constitutive parameters of IM7/8552 carbon fiber/epoxy composite unidirectional laminate along thickness directionction[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 177-185. doi: 10.13801/j.cnki.fhclxb.20200316.001
Citation: HE Tiren, LIU Liu, XU Jifeng. Digital image correlation aided method for identification of nonlinear constitutive parameters of IM7/8552 carbon fiber/epoxy composite unidirectional laminate along thickness directionction[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 177-185. doi: 10.13801/j.cnki.fhclxb.20200316.001

数字图像相关方法辅助的IM7/8552碳纤维/环氧树脂复合材料单向带层合板沿厚度方向非线性本构参数识别

doi: 10.13801/j.cnki.fhclxb.20200316.001
基金项目: 中国博士后科学基金面上资助(2019M651629)
详细信息
    通讯作者:

    刘刘,博士,副教授,博士生导师,研究方向为复合材料力学响应行为的实验 E-mail:liuliu@bit.edu.cn

  • 中图分类号: TB332

Digital image correlation aided method for identification of nonlinear constitutive parameters of IM7/8552 carbon fiber/epoxy composite unidirectional laminate along thickness directionction

  • 摘要: 提出了采用数字图像相关(DIC)方法和有限元模型修正(FEMU)技术相结合,通过短梁剪切(SBS)试验获得碳纤维增强环氧树脂(IM7/8552)正交各向异性复合材料单向带层合板沿厚度方向压缩本构关系参数的试验方法。该方法根据假设材料初始本构,采用3D有限元模型(FEM)计算获得主平面压头下方沿厚度方向的应力和应变分布,以DIC实测应变和有限元计算应变之间的方差建立目标函数,并在FEM中进行迭代更新,收敛后获得材料本构参数。由于选择的试样加载形式近似静定结构,试样表面的应力分布对材料本构关系及参数弱相关,上述迭代过程进一步转化为通过全场有限元计算应力和DIC实测应变之间的最小二乘回归识别假设本构关系及参数。因此,该方法具有以下优点:迭代过程中不需要建立针对识别参数的显式敏感度矩阵,识别效率高;识别过程对初始材料本构参数不敏感。

     

  • 图  1  改进短梁剪切试验(SBS)装置

    Figure  1.  Equipment setup of custom short-beam shear (SBS) test

    图  2  碳纤维/环氧树脂(IM7/8552)复合材料单向带层合板材料方向示意图

    Figure  2.  Schematic diagram of material directions of carbon fiber/epoxy (IM7/8552) composite unidirectional belt laminate

    图  3  IM7/8552复合材料单向带层合板压头下方挤压失效

    Figure  3.  Compressive failure of IM7/8552 composite unidirectional belt laminate under loading nose

    图  4  数字图像相关(DIC)方法实测IM7/8552复合材料单向带层合板应变云图

    Figure  4.  Cloud images of strain of IM7/8552 composite unidirectional belt laminate from digital image correlation (DIC) aided method ((a) Normal axial strain; (b) Interlaminar strain; (c) Shear strain)

    图  5  SBS试验的IM7/8552复合材料单向带层合板3D有限元模型(FEM)的全局模型和子模型

    Figure  5.  3D global and sub finite element model (FEM) of IM7/8552 composite unidirectional belt laminate of SBS test

    ROI—Region of interest; L, w, h—Length, width and height of specimen, respectively

    图  6  开展本构参数识别感兴趣区域(ROI)

    Figure  6.  Region of interest(ROI) of identification process

    P—External load of SBS test

    图  7  有限元模型修正(FEMU)法沿厚度方向压缩本构参数识别流程图

    Figure  7.  Flowchart of thickness compressive constitutive parameters identification process using finite element model updating (FEMU) method

    ε33—Interlaminar compressive stress-strain; B.C.—Boundary conditions

    图  8  IM7/8552复合材料单向带层合板横向压缩应力-应变数据和最小二乘回归结果

    Figure  8.  Interlaminar compressive stress-strain data and least-square convergence results of IM7/8552 composite unidirectional belt laminate

    图  9  IM7/8552复合材料单向带层合板沿厚度方向压缩正应力-应变关系识别结果(a)及目标函数值(b)随迭代次数的变化

    Figure  9.  Variation of constitutive curves (a) and objective function results (b) with iterations of IM7/8552 composite unidirectional belt laminate

    图  10  不同本构参数初值识别前和识别收敛后的应力-应变曲线

    Figure  10.  Stress-strain curves of different initial approximation before and after identification

    A—Linear elastic initial approximation; B—Over inelastic initial approximation

    表  1  IM7/8552复合材料单向带层合板厚度方向本构参数识别结果

    Table  1.   Convergence results of compressive constitutive parameters along thickness direction of IM7/8552 composite unidirectional belt laminate

    E33C/MPa−1K33C/MPa−1n33C
    18 603.86786.503.59
    28 879.12861.303.54
    38 688.18794.213.63
    48 592.68785.483.59
    58 418.64717.233.66
    AVG8 636.49788.943.60
    COV/%1.946.481.26
    Notes: E33C—Compressive elastic modulus in thickness direction; K33C—Secant modulus in thickness direction; n33C—Index number; COV—Coefficient of variation.
    下载: 导出CSV
  • [1] CHEN H X, CAO H J, HUANG X M. Simulation analysis of in-plane compression on three-dimensional spacer fabric composite[J]. Materials Science Forum,2019,971:36-44. doi: 10.4028/www.scientific.net/MSF.971.36
    [2] KAMAE T, DRZAL L T. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase Part Ⅰ: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion[J]. Composites Part A: Applied Science and Manufacturing,2012,43(9):1569-1577. doi: 10.1016/j.compositesa.2012.02.016
    [3] RIZVI Z H, SEMBDNER K, SUMAN A, et al. Experimental and numerical investigation of thermo-mechanical properties for nano-geocomposite[J]. International Journal of Thermophysics,2019,40(5):54.
    [4] ZHOU Y, HOSUR M, JEELANI S, et al. Fabrication and characterization of carbon fiber reinforced clay/epoxy composite[J]. Journal of Materials Science,2012,47(12):5002-5012. doi: 10.1007/s10853-012-6376-4
    [5] 彭湃, 赵美英, 王文智. 细观力学模型预测复合材料横向强度性能研究[J]. 机械科学与技术, 2017, 36(10):1611-1618.

    PENG Pai, ZHAO Meiying, WANG Wenzhi. Transverse strength prediction of composite materials via micromechanics model[J]. Mechanical Science and Technology for Aerospace Engineering,2017,36(10):1611-1618(in Chinese).
    [6] QUICK T, SAFRIET S, MOLLENHAUER D, et al. Compression testing of micro-scale unidirectional polymer matrix composites[M]//BEESE A, ZEHNDER A, XIA S. Fracture, fatigue, failure and damage evolution, Volume 8. Springer Cham, 2016: 225-233.
    [7] HUSSIEN A, MOEHRING M, SCHWALL C, et al. On compressive response of IM7/8552 lamina: A theoretical & experimental review[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Hawaii: American Institute of Aeronautics and Astronantics, Inc., 2012.
    [8] KOERBER H, XAVIER J, CAMANHO P P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation[J]. Mechanics of Materials,2010,42(11):1004-1019. doi: 10.1016/j.mechmat.2010.09.003
    [9] KAWAI M, WATANABE K, HOSHI H, et al. Effect of specimen size on longitudinal strength of unidirectional carbon/epoxy composite laminates (part 1, unnotched strength)[J]. Advanced Composite Materials,2019,28(s2):53-71.
    [10] TAM J H, ONG Z C, ISMAIL Z, et al. Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review[J]. Mechanics of Advanced Materials & Structures,2017,24(12):971-986.
    [11] KOERBER H, KUHN P, PLOECKL M, et al. Experimental characterization and constitutive modeling of the non-linear stress-strain behavior of unidirectional carbon-epoxy under high strain rate loading[J]. Advanced Modeling and Simulation in Engineering Sciences,2018,5:17.
    [12] 王显, 马少鹏, 陈俊达, 等. 数字散斑相关方法的全场优化表述[J]. 北京理工大学学报, 2011, 31(5):505-508, 566.

    WANG Xian, MA Shaopeng, CHEN Junda, et al. Global optimization model for digital speckle correlation method[J]. Transactions of Beijing Institute of Technology,2011,31(5):505-508, 566(in Chinese).
    [13] GONZALEZ J F, ANTARTIS D A, MARTINEZ M, et al. Three-dimensional study of graphite-composite electrode chemo-mechanical response using digital volume correlation[J]. Experimental Mechanics,2018,58(9):573-583.
    [14] BARBARELLA E, ALLIX O, DAGHIA F, et al. Comparison of mechanical tests for the identification of composite defects using full-field measurements and the modified constitutive relation error[M]//SORIĆ J, WRIGGERS P, ALLIX O. Multiscale modeling of heterogeneous structures. Springer, Cham, 2018: 39-59.
    [15] AVRIL S, PIERRON F, PANNIER Y, et al. Stress reconstruction and constitutive parameter identification in plane-stress elasto-plastic problems using surface measurements of deformation fields[J]. Experimental Mechanics,2008,48(4):403-419. doi: 10.1007/s11340-007-9084-2
    [16] GREDIAC M, TOUSSAINT E, PIERRON F. Special virtual fields for the direct determination of material parameters with the virtual fields method 2: Application to in-plane properties[J]. International Journal of Solids & Structures,2002,39(10):2707-2730.
    [17] GREDIAC M, PIERRON F, AVRIL S, et al. The virtual fields method for extracting constitutive parameters from full-field measurements: A review[J]. Strain,2010,42(4):233-253.
    [18] CARPENTIER A P. Advanced materials characterization based on full field deformation measurements[D]. Texas: University of Texas at Arlington, 2013.
    [19] 贾利勇, 贾欲明, 于龙, 等. 基于多尺度模型的复合材料厚板G13剪切失效分析[J]. 复合材料学报, 2017, 34(4):786-794.

    JIA Liyong, JIA Yuming, YU Long, et. al. Failure analysis of thick composite laminates with multi-scale modelling under G13 out-of-plane shear loading[J]. Acta Materiae Compositae Sinica,2017,34(4):786-794(in Chinese).
    [20] JI X, HAO Z, SU L, et al. Characterizing the constitutive response of plain-woven fibre reinforced aerogel matrix composites using digital image correlation[J]. Composite Structures,2020,234:111652.
    [21] VIALA R, PLACET V, COGAN S. Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3D velocity fields measurements (FEMU-3DVF): Application to bio-based composite violin soundboards[J]. Composites Part A: Applied Science and Manufacturing,2018,106:91-103.
    [22] 薛康, 肖毅, 王杰, 等. 单向纤维增强聚合物复合材料压缩渐进破坏[J]. 复合材料学报, 2019, 36(6):1398-1412.

    XUE Kang, XIAO Yi, WANG Jie, et. al. Compression progressive failure of unidirectional fiber reinforced polymer composite[J]. Acta Materiae Compositae Sinica,2019,36(6):1398-1412(in Chinese).
    [23] MAKEEV A, HE Y, CARPENTIER P, et al. A method for measurement of multiple constitutive properties for composite materials[J]. Composites Part A: Applied Science and Manufacturing,2012,43(12):2199-2210. doi: 10.1016/j.compositesa.2012.07.021
    [24] MAKEEV A, CARPENTIER P, SHONKWILER B. Methods to measure interlaminar tensile modulus of composites[J]. Composites Part A: Applied Science and Manufacturing,2014,56:256-261.
    [25] HE T, LIU L, MAKEEV A, et al. Characterization of stress-strain behavior of composites using digital image correlation and finite element analysis[J]. Composite Structures,2016,140:84-93. doi: 10.1016/j.compstruct.2015.12.018
    [26] HE T, LIU L, MAKEEV A. Uncertainty analysis in composite material properties characterization using digital image correlation and finite element model updating[J]. Composite Structures,2017,184:337-351.
    [27] JULIA C. Accurate three-dimensional characterization of the nonlinear material constitutive properties for laminated composite materials[D]. Texas: University of Texas at Arlington, 2015.
    [28] ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344M—16[S]. West Conshohocken: ASTM International, 2016.
    [29] HE Y, MAKEEV A. Nonlinear shear behavior and interlaminar shear strength of unidirectional polymer matrix composites: A numerical study[J]. International Journal of Solids and Structures,2014,51(6):1263-1273. doi: 10.1016/j.ijsolstr.2013.12.014
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1995
  • HTML全文浏览量:  436
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 录用日期:  2020-03-04
  • 网络出版日期:  2020-03-16
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回