留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能

欧华杰 陈港 朱朋辉 魏渊 李方

欧华杰, 陈港, 朱朋辉, 等. 纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能[J]. 复合材料学报, 2020, 37(11): 2735-2742. doi: 10.13801/j.cnki.fhclxb.20200306.003
引用本文: 欧华杰, 陈港, 朱朋辉, 等. 纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能[J]. 复合材料学报, 2020, 37(11): 2735-2742. doi: 10.13801/j.cnki.fhclxb.20200306.003
OU Huajie, CHEN Gang, ZHU Penghui, et al. Preparation and strain sensitive performance of cellulose nanofiber-carbon nanotubes/ thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2735-2742. doi: 10.13801/j.cnki.fhclxb.20200306.003
Citation: OU Huajie, CHEN Gang, ZHU Penghui, et al. Preparation and strain sensitive performance of cellulose nanofiber-carbon nanotubes/ thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2735-2742. doi: 10.13801/j.cnki.fhclxb.20200306.003

纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能

doi: 10.13801/j.cnki.fhclxb.20200306.003
基金项目: 国家重点研发计划项目(2018YFC1902102);国家工业和信息化部重点行业绿色制造系统集成项目(Z135060009002);制浆造纸工程国家重点实验室团队项目(2017ZD01)
详细信息
    通讯作者:

    陈港,博士,教授,研究方向为造纸技术与特种纸 E-mail:papercg@scut.edu.cn

  • 中图分类号: TB332

Preparation and strain sensitive performance of cellulose nanofiber-carbon nanotubes/ thermoplastic polyurethane composite films

  • 摘要: 采用2,2,6,6−四甲基哌啶−1−氧自由基(TEMPO)氧化法制备了不同羧基含量的纳米纤维素(CNF),并将其用作碳纳米管(CNTs)的分散剂,通过超声、离心处理制备出稳定均一的CNF−CNTs分散液,然后通过朗伯−比尔定律测定CNF−CNTs分散液中CNTs的浓度,研究了不同CNF羧基含量对CNTs的分散效果。此外,利用静电纺丝法制备出柔性、多孔的热塑性聚氨酯(TPU)薄膜作为基体,以CNF−CNTs分散液作为导电填料,通过真空抽滤法将CNF−CNTs负载于TPU多孔膜上,制备出CNF−CNTs/TPU复合薄膜,并探究了不同CNF羧基含量对CNF−CNTs/TPU复合薄膜应变响应性能的影响规律。结果表明,羧基含量对CNF的分散性能具有重要影响。随着CNF羧基含量的提高,CNF对CNTs分散效果越好,CNF−CNTs/TPU复合薄膜具有更大的应变响应范围。当CNF羧基含量为1.698 mmol/g时,CNF−CNTs/TPU复合薄膜的应变响应范围高达507%,灵敏度系数为335,表现出优异的应变响应性能。

     

  • 图  1  纳米纤维素-碳纳米管/热塑性聚氨酯(CNF−CNTs/TPU)复合薄膜的制备示意图

    Figure  1.  Schematic diagram of preparation of cellulose nanofiber-carbon nanotubes/thermoplastic polyurethane(CNF−CNTs/TPU) composite film

    DMF—N,N-dimethylformamide

    图  2  CNF-CNTs/TPU复合薄膜的光学照片(插图为卷曲状态)

    Figure  2.  Optical photograph of CNF-CNTs/TPU composite film (Inset is bending state)

    图  3  不同羧基含量的CNF分散液(1 mg/mL)的光学照片

    Figure  3.  Optical photograph of CNF dispersions (1 mg/mL) with different carboxyl contents

    图  4  不同CNF羧基含量的CNF-CNTs分散液的紫外-可见吸收光图谱

    Figure  4.  UV-Vis absorption spectra of CNF-CNTs dispersion with different carboxyl contents of CNF

    图  5  静电纺丝TPU多孔膜(a)和CNF−CNTs/TPU复合薄膜预拉伸前(b)、横截面(c)、预拉伸后(d)的SEM图像

    Figure  5.  SEM images of electrospun TPU porous film (a) and before pre-stretching (b), cross section (c) and after pre-stretching (d) of CNF−CNTs/TPU composite film

    图  6  不同应变下CNF-CNTs/TPU复合薄膜电阻相对变化曲线

    Figure  6.  Relative change of resistance curves of CNF-CNTs/TPU composite films under different strains

    图  7  CNF-CNTs/TPU复合薄膜拉伸至400%时的光学照片

    Figure  7.  Optical photographs of CNF-CNTs/TPU composite films under strain of 400% ((a) CNF-CNTs/TPU1; (b) CNF-CNTs/TPU2; (c) CNF-CNTs/TPU3; (d) CNF-CNTs/TPU4)

    图  8  CNF−CNTs/TPU 复合薄膜拉伸-释放后的 SEM 图像

    Figure  8.  SEM images of CNF−CNTs/TPU composite films ((a) CNF−CNTs/TPU1, (b) CNF−CNTs/TPU2, (c) CNF−CNTs/TPU3, (d) CNF−CNTs/TPU4, (e) CNF−CNTs/TPU4’s crack, (f) Magnification of CNF−CNTs/TPU4’s crack)

    表  1  不同CNF羧基含量的CNF-CNTs/TPU复合薄膜的编号及成分

    Table  1.   Serial numbers and component details of CNF-CNTs/TPU composite films with different carboxyl contents of CNF

    No.Carboxyl content of CNF/(mmol·g−1)CNF/
    wt%
    CNTs/
    wt%
    TPU/
    wt%
    CNF-CNTs/TPU1 0.663 2.4 1.2 96.4
    CNF-CNTs/TPU2 0.947 2.4 1.2 96.4
    CNF-CNTs/TPU3 1.348 2.4 1.2 96.4
    CNF-CNTs/TPU4 1.698 2.4 1.2 96.4
    下载: 导出CSV
  • [1] ZHU B W, WANG H, LIU Y Q, et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture[J]. Advanced Materials,2016,28(8):1559-1566. doi: 10.1002/adma.201504754
    [2] TRUNG T Q, LEE N E. Recent progress on stretchable electronic devices with intrinsically stretchable components[J]. Advanced Materials,2017,29(3):1603167.
    [3] LIM S, SON D, KIM J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials,2014,25(3):375-383.
    [4] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials,2015,27(15):2433-2439. doi: 10.1002/adma.201500009
    [5] HEMPEL M, NEZICH D, KONG J, et al. A novel class of strain gauges based on layered percolative films of 2D materials[J]. Nano Letters,2012,12(11):5714-5718. doi: 10.1021/nl302959a
    [6] ZHENG Y, LI Y, LI Z, et al. The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors[J]. Composites Science and Technology,2017,139:64-73.
    [7] ZHANG M, WANG C, WANG H, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials,2016,27(2):1604795.
    [8] HWANG B U, LEE J H, TRUNG T Q, et al. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities[J]. ACS Nano,2015,9(9):8801-8810. doi: 10.1021/acsnano.5b01835
    [9] SHI G, ZHAO Z, PAI J H, et al. Highly sensitive, wearable, durable strain sensors, and stretchable conductors using graphene/silicon rubber composites[J]. Advanced Functional Materials,2016,26(42):7614-7625. doi: 10.1002/adfm.201602619
    [10] LU N S, LU C, YANG S X, et al. Highly sensitive skin mountable strain gauges based entirely on elastomers[J]. Advanced Functional Materials,2012,22(19):4044-4050. doi: 10.1002/adfm.201200498
    [11] ZHU H F, WANG X W, LIANG J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites[J]. Advanced Functional Materials,2017,27(21):1606604.
    [12] KIM B S, SHIN K Y, PYO J B, et al. Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks[J]. ACS Applied Materials & Interfaces,2016,8(4):2582-2590.
    [13] LI X M, YANG T T, YANG Y, et al. Large-area ultrathin graphene films by single-step Marangoni self-assembly for highly sensitive strain sensing application[J]. Advanced Functional Materials,2016,26(9):1322-1329. doi: 10.1002/adfm.201504717
    [14] ZHU L, ZHOU X, LIU Y, et al. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes[J]. ACS Applied Materials & Interfaces,2019,11(13):12968-12977.
    [15] HU W, NIU X, ZHAO R, et al. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane[J]. Applied Physics Letters,2013,102(8):083303.
    [16] BAE S H, LEE Y, SHARMA B K, et al. Graphene-based transparent strain sensor[J]. Carbon,2013,51:236-242. doi: 10.1016/j.carbon.2012.08.048
    [17] KONG J H, JANG N S, KIM S H, et al. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors[J]. Carbon,2014,77:199-207. doi: 10.1016/j.carbon.2014.05.022
    [18] HAJIAN A, LINDSTROM S B, PETTERSON T, et al. Understanding the dispersive action of cellulose nanofiber for carbon nanomaterials[J]. Nano Letters,2017,17(3):1439-1447. doi: 10.1021/acs.nanolett.6b04405
    [19] 方志强. 高透明纸的制备及其在电子器件中的应用[D]. 广州: 华南理工大学, 2014.

    FANG Z Q. Highly transparent paper for electronic devices[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
    [20] 何文, 李吉平, 金辉, 等. 毛竹纳米纤维素的烷基化改性[J]. 南京林业大学学报(自然科学版), 2016, 40(2):144-148.

    HE W, LI J P, JIN H, et al. Alkylated modification of bamboo cellulose nanofiber[J]. Journal of Nanjing Forestry University (Natural Science Edition),2016,40(2):144-148(in Chinese).
    [21] HAMEDI M M, HAJIAN A, FALL A B, et al. Highly conducting, strong nanocomposites based on cellulose nanofiber-assisted aqueous dispersions of single-wall carbon nanotubes[J]. ACS Nano,2014,8(3):2467-2476. doi: 10.1021/nn4060368
    [22] LI Y, ZHU H, SHEN F, et al. Cellulose nanofiber as green dispersant for two-dimensional energy materials[J]. Nano Energy,2015,13:346-354. doi: 10.1016/j.nanoen.2015.02.015
    [23] 吴波, 邵发宁, 何文, 等. TEMPO氧化纤维素纳米纤丝对多壁碳纳米管分散性的影响[J]. 复合材料学报, 2019, 36(9):2212-2219.

    WU B, SHAO F N, HE W, et al. Dispersion effect of TEMPO oxidized cellulose nanofibrils on multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2019,36(9):2212-2219(in Chinese).
    [24] 朱朋辉, 陈港, 欧华杰, 等. 纳米纤维素/碳纳米管复合薄膜的制备及湿敏性能[J]. 华南理工大学学报(自然科学版), 2019, 47(8):129-135.

    ZHU P H, CHEN G, OU H J, et al. Preparation and humidity sensitive performance of nanocellulose/carbon nanotube composite films[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(8):129-135(in Chinese).
    [25] PARK B, KIM J, KANG D, et al. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: Effect of crack depth[J]. Advanced Materials,2016,28(37):8130-8137. doi: 10.1002/adma.201602425
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1845
  • HTML全文浏览量:  947
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-01-06
  • 网络出版日期:  2020-03-06
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回