留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械搅拌器对C-SiC/Cu半固态浆料中石墨颗粒和SiCP的影响

李鸿武 杜云慧 张鹏 曹海涛 苏丽洁

李鸿武, 杜云慧, 张鹏, 等. 机械搅拌器对C-SiC/Cu半固态浆料中石墨颗粒和SiCP的影响[J]. 复合材料学报, 2020, 37(11): 2853-2860. doi: 10.13801/j.cnki.fhclxb.20200225.002
引用本文: 李鸿武, 杜云慧, 张鹏, 等. 机械搅拌器对C-SiC/Cu半固态浆料中石墨颗粒和SiCP的影响[J]. 复合材料学报, 2020, 37(11): 2853-2860. doi: 10.13801/j.cnki.fhclxb.20200225.002
LI Hongwu, DU Yunhui, ZHANG Peng, et al. Effect of mechanical stirrer on graphite particles and SiCP in C-SiC/Cu semi-solid slurry[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2853-2860. doi: 10.13801/j.cnki.fhclxb.20200225.002
Citation: LI Hongwu, DU Yunhui, ZHANG Peng, et al. Effect of mechanical stirrer on graphite particles and SiCP in C-SiC/Cu semi-solid slurry[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2853-2860. doi: 10.13801/j.cnki.fhclxb.20200225.002

机械搅拌器对C-SiC/Cu半固态浆料中石墨颗粒和SiCP的影响

doi: 10.13801/j.cnki.fhclxb.20200225.002
基金项目: 北京市自然基金资助项目(2162036)
详细信息
    通讯作者:

    杜云慧,博士,副教授,硕士生导师,研究方向为金属基复合材料的成形 E-mail:yhdu@bjtu.edu.cn

  • 中图分类号: TG249

Effect of mechanical stirrer on graphite particles and SiCP in C-SiC/Cu semi-solid slurry

  • 摘要: 利用直桨叶搅拌器在圆柱坩埚内机械搅拌C-SiC/Cu半固态浆料,研究搅拌速度为200 r/min、搅拌器上下移动速度为10 mm/s时C-SiC/Cu半固态浆料中石墨颗粒和SiC颗粒(SiCP)的均匀性。结果表明:直桨叶与水平面的夹角γ与两种颗粒在坩埚顶部和底部含量偏差都存在二次关系,当γ=30°时石墨颗粒和SiCP在坩埚中轴向分布均匀,但同一水平面内的SiCP仍存在偏聚现象,说明SiCP的偏聚是导致常规直桨叶机械搅拌C-SiC/Cu半固态浆料整体不均匀的主要原因;利用双层桨叶搅拌器代替常规直桨叶搅拌器,通过调整叶片层间距h,当h=10~20 mm时可以消除SiCP的偏聚现象;通过对单层桨叶搅拌器和双层桨叶搅拌器机械搅拌铸造获得的C-SiC/Cu复合材料进行磨损试验发现,单层桨叶搅拌器不同部位磨损率存在差异,双层桨叶搅拌器磨损率几乎相同。说明SiCP的偏聚可以通过增大机械搅拌剪切力度得以消除,利用双层桨叶搅拌器进行机械搅拌可以获得均质的C-SiC/Cu半固态浆料。

     

  • 图  1  搅拌装置示意图

    Figure  1.  Schematic diagram of agitator((a) Whole setup configuration; (b) Cross section of A-A; (c) Cross section of B-B)

    1—Stirrer; 2—Crucible; 3—Cooling-pipes; 4—Heating-rods; 5—Cover; 6—Ar gas pipe; 7—Thermocouple; 8—Semi-solid slurry; 9—Center stopple; 10—Lower side stopple; 11—Upper side stopple; 12—Lower bracket; 13—Water tank; 14—Rotating motor; 15—Rotating gearing; 16—Moving board; 17—Moving screw; 18—Moving gearing; 19—Moving motor; 20—Lower switch; 21—Upper switch; 22—Upper bracket

    图  2  单层桨叶搅拌器示意图

    Figure  2.  Illustration of single blade stirrer

    ω—Direction of rotation; γ—Angle between straight blade and horizontal plane; R—Stirrer; S—Blade holder; B1—Blade 1; B2—Blade 2; B3—Blade 3; B4—Blade 4; T—Endpoint

    图  3  双层桨叶搅拌器示意图

    Figure  3.  Illustration of double-layer blade stirrer

    h—Blade layer spacing

    图  4  磨损试样取样示意图

    Figure  4.  Schematic diagram of sample sampling for wear

    图  5  搅拌桨叶与水平面的夹角γ与坩埚底部和顶部颗粒含量之间的关系

    Figure  5.  Relationship between angle γ between stir-blade and horizontal plane and particles content at bottom and top of crucible

    SiCP—SiC particles

    图  6  γ对浆料运动的影响

    Figure  6.  Influence of γ on movement of slurry change ((a) Change of slurry movement; (b) Decomposition of movement along blade surface)

    图  7  γ与坩埚底部和顶部颗粒含量偏差d之间的关系

    Figure  7.  Relationship between γ and particles content relative deviation at bottom and top of crucible d ((a) Graphite particles content relative deviation d1; (b) SiCP content relative deviation d2)

    图  8  γ=30°时C-SiC/Cu半固态浆料冷淬铸锭的微观组织

    Figure  8.  Microstructures of C-SiC/Cu semi-solid slurry cold quenching ingot casting when γ=30°

    图  9  双层搅拌器叶片层间距h与SiCP聚集区尺寸的关系

    Figure  9.  Relationship between double-layer-stirrer interlamellar spacing h and SiCP aggregation area size

    图  10  双层桨叶搅拌器机械搅拌获得的C-SiC/Cu铸锭微观组织

    Figure  10.  Microstructures of C-SiC/Cu ingot stirred by double-layer blade stirrer

    表  1  C-SiC/Cu复合材料成分配比

    Table  1.   Composition proportion of C-SiC/Cu composite

    Cu/vol%Graphite/vol%SiC/vol%Impurities/vol%
    89 10 1 <0.5
    下载: 导出CSV

    表  2  不同位置的石墨颗粒和SiC颗粒(SiCP)含量及含量偏差d

    Table  2.   Contents of graphite particles and SiC particles(SiCP) at different positions and content relative deviation d

    SampleCct/vol%Ccb/vol%Cst/vol%Csb/vol%d
    1 10.0 10.1 0.99 1.00 ≈0
    2 9.9 10.0 1.01 1.00 ≈0
    3 10.1 10.0 1.00 1.01 ≈0
    Notes: Cct, Ccb—Graphite particles content at top and bottom of crucible, respectively; Cst, Csb— SiCP content at top and bottom of crucible, respectively; d— Particles content reative deviation.
    下载: 导出CSV

    表  3  不同搅拌器获得的C-SiC/Cu复合材料不同部位的磨损率

    Table  3.   Wear rates of different parts of C-SiC/Cu composites stirred by different stirrers

    Sampling pointRstRscRsbRdtRdcRdb
    1 0.255 0.241 0.251 0.248 0.247 0.248
    2 0.241 0.254 0.249 0.249 0.248 0.248
    3 0.245 0.258 0.241 0.249 0.248 0.248
    4 0.260 0.243 0.240 0.248 0.248 0.247
    5 0.240 0.250 0.254 0.249 0.248 0.247
    6 0.252 0.240 0.251 0.247 0.247 0.248
    7 0.243 0.250 0.252 0.248 0.248 0.249
    Notes: Rst, Rsc, Rsb—Wear rates of top, center and bottom of ingot casting in simple blade stirrer mechanical stir casting, respectively; Rdt, Rdc, Rdb—Wear rates of top, center and bottom of ingot casting in double-layer blade stirrer mechanical stir casting, respectively.
    下载: 导出CSV
  • [1] 李国辉, 刘勇, 国秀花, 等. TiB2/Cu复合材料的电弧侵蚀行为[J]. 复合材料学报, 2018, 35(3):616-622.

    LI Guohui, LIU Yong, GUO Xiuhua, et al. Arc erosion behavior of TiB2/Cu composites[J]. Acta Materiae Compositae Sinica,2018,35(3):616-622(in Chinese).
    [2] AKBARPOUR M R, NAJAFI M, ALIPOUR S, et al. Hardness, wear and friction characteristics of nanostructured Cu-SiC nanocomposites fabricated by powder metallurgy route[J]. Materials Today Communications,2019,18:25-31. doi: 10.1016/j.mtcomm.2018.11.001
    [3] KOVÁČIK J, EMMER Š. Cross property cinnection between the electric and the thermal conductivities of copper-graphite composites[J]. International Journal of Engineering Science,2019,144:103130.
    [4] GRANDIN M, WIKLUND U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials[J]. Wear,2018,398-399:227-235.
    [5] 朱成才, 张鹏, 杜云慧, 等. 性能卓越的铜石墨受电弓滑板[J]. 铁道机车车辆, 2006, 26(3):62-66. doi: 10.3969/j.issn.1008-7842.2006.03.022

    ZHU Chengcai, ZHANG Peng, DU Yunhui, et al. Copper-graphite pantograph slide plate with superexcellent performance[J]. Railway Locomotive & Car,2006,26(3):62-66(in Chinese). doi: 10.3969/j.issn.1008-7842.2006.03.022
    [6] MEHER A, CHAIRA D. Effect of graphite and SiC addition into Cu and SiC particle size effect on fabrication of Cu-graphite-SiC MMC by powder metallurgy[J]. Transactions of the Indian Institute of Metals,2017,70(8):2047-2057. doi: 10.1007/s12666-016-1026-1
    [7] KANG H K, KANG S B. Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit[J]. Materials Science and Engineering A,2006,428(1-2):336-345.
    [8] JAMWAL A, PRAKASH P, KUMAR D, et al. Microstructure wear and corrosion characteristics of Cu matrix reinforced SiC-graphite hybrid composites[J]. Journal of Composite Materials,2019,53(18):2545-2553.
    [9] ZHANG W Y, DU Y H, ZHANG P, et al. Air-isolated stir casting of homogeneous Al-SiC composite with no air entrapment and Al4C3[J]. Journal of Materials Processing Technology,2019,271:226-236.
    [10] 常海, 黄勇, 胡小石. 搅拌铸造法制备短纤维/AZ91复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1):159-166.

    CHANG Hai, HUANG Yong, HU Xiaoshi. Microstructure and mechanical properties of short carbon fiber/AZ91 composite fabricated by stir-casting[J]. Acta Materiae Compositae Sinica,2019,36(1):159-166(in Chinese).
    [11] 胡勇, 倪旭武. 搅拌铸造法制备纳米SiCP/AZ91D复合材料的研究[J]. 热加工工艺, 2015, 44(24):116-118.

    HU Yong, NI Xuwu. Study on nano SiCP/AZ91D composite prepared by cast with stirring[J]. Hot Working Technology,2015,44(24):116-118(in Chinese).
    [12] DONG Y, WANG X, XIE Y, et al. Tunable microstructures and tensile mechanical properties of oxide-dispersion-strengthened Cu by extrusion and secondary processing[J]. Journal of Alloys and Compounds,2020,812:152112.
    [13] 赵敏, 姜龙涛, 武高辉. 挤压铸造TiB2P/Al复合材料室温力学性能[J]. 复合材料学报, 2007, 24(5):1-5. doi: 10.3321/j.issn:1000-3851.2007.05.001

    ZHAO Min, JIANG Longtao, WU Gaohui. Ambient mechanical properties of TiB2P/Al composites by squeeze casting[J]. Acta Materiae Compositae Sinica,2007,24(5):1-5(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.05.001
    [14] 李乃拥, 肖寒, 熊迟, 等. 半固态挤压铸造铜合金的组织和力学性能[J]. 稀有金属材料与工程, 2018, 47(9):2813-2820.

    LI Naiyong, XIAO Han, XIONG Chi, et al. Microstructure and mechanical properties of semi-solid squeeze casting copper alloy[J]. Rare Metal Materials and Engineering,2018,47(9):2813-2820(in Chinese).
    [15] 朱成才. 铜—石墨复合材料的半固态制备及其摩擦性能研究[D]. 北京: 北京交通大学, 2006.

    Zhu Chengcai. Preparation for copper-graphite by semi-solid forming method and the frictional behavior study[D]. Beijing: Beijing Jiaotong University, 2006(in Chinese).
    [16] NAGESWARAN G, NATARAJAN S, RAMKUMAR K R. Synthesis, structural characterization, mechanical and wear behavior of Cu-TiO2-Gr hybrid composite through stir casting technique[J]. Journal of Alloys and Compounds,2018,768:733-741. doi: 10.1016/j.jallcom.2018.07.288
    [17] DU Y H, ZHANG P, ZHANG J, et al. Radial distribution of SiC particles in mechanical stirring of A356-SiCP liquid[J]. Journal of Materials Science & Technology,2012,28(10):951-955.
    [18] 李昊, 桂满昌, 周彼德. 搅拌铸造金属基复合材料的热力学和动力学机制[J]. 中国空间科学技术, 1997(1):9-16.

    LI Hao, GUI Manchang, ZHOU Bide. Thermodynamics and dynamics of stirring cast process for metal matrix composites[J]. Chinese Space Science and Technology,1997(1):9-16(in Chinese).
    [19] 郝斌, 崔华, 蔡元华, 等. 搅拌铸造法制备金属基复合材料的热力学与动力学机制[J]. 稀有金属快报, 2005, 24(6):22-25.

    HAO Bin, CUI Hua, CAI Yuanhua, et al. The thermodynamic and kinetic mechanism of metal matrix composite prepared by agitation casting[J]. Rare Metals Letters,2005,24(6):22-25(in Chinese).
    [20] 张桢林, 张志峰, 徐骏, 等. SiCP/Al复合材料搅拌铸造新型搅拌器流场及工艺研究[J]. 材料导报, 2017, 31(10):141-145. doi: 10.11896/j.issn.1005-023X.2017.010.029

    ZHANG Zhenlin, ZHANG Zhifeng, XU Jun, et al. Study on flow field and process of new stirrer for stir casting of SiCP/Al composites[J]. Materials Review,2017,31(10):141-145(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.010.029
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1241
  • HTML全文浏览量:  463
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 录用日期:  2020-02-14
  • 网络出版日期:  2020-02-25
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回