留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响

胥长龙 卢德宏 唐露 李明宇

胥长龙, 卢德宏, 唐露, 等. 复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响[J]. 复合材料学报, 2020, 37(9): 2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002
引用本文: 胥长龙, 卢德宏, 唐露, 等. 复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响[J]. 复合材料学报, 2020, 37(9): 2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002
XU Changlong, LU Dehong, TANG Lu, et al. Effect of composite volume fraction on impact wear properties of zirconium oxide toughened alumina particles/40Cr architecture composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002
Citation: XU Changlong, LU Dehong, TANG Lu, et al. Effect of composite volume fraction on impact wear properties of zirconium oxide toughened alumina particles/40Cr architecture composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002

复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响

doi: 10.13801/j.cnki.fhclxb.20200220.002
基金项目: 国家自然科学基金(51461025)
详细信息
    通讯作者:

    卢德宏,博士,教授,博士生导师,研究方向为金属基复合材料 E-mail:ldhongkust@126.com

  • 中图分类号: TB333

Effect of composite volume fraction on impact wear properties of zirconium oxide toughened alumina particles/40Cr architecture composites

  • 摘要: 为研究空间结构复合材料中复合区体积分数对复合材料冲击磨损性能的影响,采用挤压铸造法制备了不同复合区体积分数(35vol%、50vol%、65vol%)的氧化锆增韧氧化铝颗粒(ZTAP)三维网络增强40Cr钢基复合材料(ZTAP/40Cr空间结构复合材料),经过850℃淬火和460℃回火,在冲击功为1.5 J下进行无磨料冲击磨损实验。结果表明:复合区体积分数为35vol%、50vol%、65vol%的ZTAP/40Cr空间结构复合材料磨损率分别为4.68×10−3 cm3/h、3.40×10−3 cm3/h、1.04×10−3 cm3/h,ZTAP/40Cr复合材料和40Cr钢的磨损率分别为13.41×10−3 cm3/h和79.87×10−3 cm3/h。ZTAP/40Cr空间结构复合材料的耐磨性随复合区体积分数增加而提高。进一步分析表明,ZTAP/40Cr空间结构复合材料的冲击磨损机制包含表面发生的磨粒磨损和黏着磨损,主要是基体黏着和整个表面被犁削及亚表层萌生的疲劳磨损,是由反复冲击过程中产生的ZTAP破碎和ZTAP与40Cr界面开裂导致的材料块状脱落。

     

  • 图  1  复合区体积分数为50vol%的ZTAP/40Cr空间结构复合材料的模型和实物

    Figure  1.  Model and physical diagrams of ZTAP/40Cr architecture composites with composite area of 50vol% volume fraction

    图  2  MLD-10型动载磨损试验机

    Figure  2.  MLD-10 dynamic load abrasion tester

    图  3  ZTAP/40Cr空间结构复合材料的复合区金相组织

    Figure  3.  Metallographic structure of composite area of ZTAP/40Cr architecture composites

    图  4  ZTAP/40Cr空间结构复合材料基体硬度及复合区硬度

    Figure  4.  Matrix hardness and composite area hardness of ZTAP/40Cr architecture composites

    图  5  ZTAP/40Cr复合材料的体积磨损量和体积磨损率

    Figure  5.  Volume wear and volume wear rate of ZTAP/40Cr architecture composites

    图  6  ZTAP/40Cr空间结构复合材料冲击磨损的SEM图像

    Figure  6.  SEM images of impact wear of ZTAP/40Cr architecture composites((a), (b) 35vol%; (c), (d) 50vol%; (e), (f) 65vol%; (g) Uniform composite; (h) Matrix)

    图  7  不同复合区体积分数的ZTAP/40Cr空间结构复合材料冲击磨损后亚表层组织

    Figure  7.  Subsurface organizations of ZTAP/40Cr architecture composites with different composite volume fractions after impact wear

    图  8  ZTAP/40Cr空间结构复合材料的冲击磨损示意图

    Figure  8.  Impact wear diagrams of ZTAP/40Cr architecture composites

    表  1  氧化锆增韧氧化铝颗粒三维网络增强40Cr钢基(ZTAP/40Cr)空间结构复合材料的模型设计

    Table  1.   Model designs of zirconium oxide toughened alumina particles 3D network reinforced 40Cr steel matrix(ZTAP/40Cr) architecture composite

    Volume fraction/vol%Diameter/
    mm
    Wall thickness/
    mm
    Mode size/
    mm
    35 3.4 2.7 15×15×30
    50 4.3 2.1 15×15×30
    65 5.2 1.6 15×15×30
    下载: 导出CSV
  • [1] 周谟金, 蒋业华, 温放放, 等. 热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响[J]. 材料导报, 2017, 31(14):117-121. doi: 10.11896/j.issn.1005-023X.2017.014.025

    ZHOU M J, JIANG Y H, WEN F F, et al. Effect of heat treatment on wear resistance of high chromium cast iron based honeycomb ceramic composites[J]. Materials Reports,2017,31(14):117-121(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.014.025
    [2] LU J, YU H, KANG P F, et al. Study of microstructure, mechanical properties and impact-abrasive wear behavior of medium-carbon steel treated by quenching and partitioning (Q <italic>&</italic> P) process[J]. Wear,2018,414–415:21-30.
    [3] WANG C Y, LI X D, CHANG Y, et al. Comparison of three-body impact abrasive wear behaviors for quenching-partitioning-tempering and quenching-tempering 20Si2Ni3 steels[J]. Wear,2016,362–363:121-128.
    [4] BAI W, ROY A, SUN R L, et al. Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning[J]. Journal of Materials Processing Technology,2019,268:149-161.
    [5] 陈奉锐, 山泉, 李祖来, 等. 重熔温度对WC<sub>P</sub>/Fe复合材料界面特征及压缩断裂机制的影响[J]. 复合材料学报, 2018, 35(11):3106-3113.

    CHEN F R, SHAN Q, LI Z L, et al. Effect of remelting temperature on interface characteristics and compression fracture mechanism of WC<sub>P</sub>/Fe composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3106-3113(in Chinese).
    [6] 韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8):1625-1635.

    HAN Y F, SUN X L, QIU P K, et al. Research and progress on advanced processing technology of particle reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
    [7] 韦贺, 李祖来, 山泉, 等. WC体积分数对WC<sub>P</sub>/Fe复合材料组织及压缩性能的影响[J]. 复合材料学报, 2016, 33(11):2560-2568.

    WEI H, LI Z L, SHAN Q, et al. Effect of WC volume fraction on structure and compressive properties of WC<sub>P</sub>/Fe composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2560-2568(in Chinese).
    [8] 郑开宏, 高义民, 李烨飞, 等. 具有钉扎效应的CTC<sub>P</sub>/Cr26复合材料制备及界面结构[J]. 稀有金属材料与工程, 2014, 43(3):698-702.

    ZHENG K H, GAO Y M, LI Y F, et al. Preparation and interface structure of CTC<sub>P</sub>/Cr26 composites with pinning effect[J]. Rare Metal Materials and Engineering,2014,43(3):698-702(in Chinese).
    [9] ZIEJEWSKA C, MARCZYK J, SZEWCZYK-NYKIEL A, et al. Influence of size and volume share of WC particles on the properties of sintered metal matrix composites[J]. Advanced Powder Technology,2019,30(4):835-842. doi: 10.1016/j.apt.2019.01.013
    [10] QIU B, XING S M, DONG Q. Fabrication and wear behavior of ZTA particles reinforced iron matrix composite produced by flow mixing and pressure compositing[J]. Wear,2019,428–429:167-177.
    [11] HASAN Y, RECEP S. Impact wear behavior of ball burnished 316L stainless steel[J]. Surface and Coatings Technology,2019,363:369-378. doi: 10.1016/j.surfcoat.2019.02.022
    [12] 包昂, 卢德宏. WC<sub>P</sub>/高锰钢基复合材料及复合结构的冲击磨损性能[J]. 材料工程, 2018, 46(4):91-98.

    BAO A, LU D H. Impact wear properties of WC<sub>P</sub>/high manganese steel matrix composites and composite structures[J]. Journal of Materials Engineering,2018,46(4):91-98(in Chinese).
    [13] 何翠. ZGMn13Cr2高锰钢不同条件下加工硬化及冲击磨损行为研究[D]. 长沙: 湖南大学, 2016.

    HE C. Study on work hardening and impact wear behavior of ZGMn13Cr2 high manganese steel under different conditions[D]. Changsha: Hunan University, 2016(in Chinese).
    [14] 田山雪, 涂小慧, 杨浩, 等. Al<sub>2</sub>O<sub>3</sub>陶瓷增强高锰钢基复合材料耐磨性能的研究[J]. 铸造, 2017, 66(5):476-480. doi: 10.3969/j.issn.1001-4977.2017.05.009

    TIAN S X, TU X H, YANG H, et al. Study on wear resistance of Al<sub>2</sub>O<sub>3</sub> ceramic reinforced high manganese steel matrix composites[J]. Foundry,2017,66(5):476-480(in Chinese). doi: 10.3969/j.issn.1001-4977.2017.05.009
    [15] 宋怀江, 张国赏. 碳化钨增强高锰钢基复合材料冲击磨损性能的研究[J]. 铸造技术, 2005, 26(6):468-469, 477. doi: 10.3969/j.issn.1000-8365.2005.06.006

    SONG H J, ZHANG G S. Study on impact wear properties of tungsten carbide reinforced high manganese steel matrix composites[J]. Foundry Technology,2005,26(6):468-469, 477(in Chinese). doi: 10.3969/j.issn.1000-8365.2005.06.006
    [16] 张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4):1-7.

    ZHANG D, ZHANG G D, LI Z Q. Current status and development trend of metal matrix composites[J]. Materials China,2010,29(4):1-7(in Chinese).
    [17] 李响, 周幼辉, 童冠, 等. 超轻多孔类蜂窝夹心结构创新构型及其力学性能[J]. 西安交通大学学报, 2014, 48(9):88-94.

    LI X, ZHOU Y H, TONG G, et al. Innovative configuration and mechanical properties of ultra-light porous honeycomb sandwich structure[J]. Journal of Xi’an Jiaotong University,2014,48(9):88-94(in Chinese).
    [18] 廖冲. 空间结构形式对钢基复合材料力学性能的影响[D]. 昆明: 昆明理工大学, 2017.

    LIAO C. Effect of spatial structure on mechanical properties of steel matrix composites[D]. Kunming: Kunming University of Science and Technology, 2017(in Chinese).
    [19] 廖冲, 卢德宏, 余晶, 等. Ti活化Al<sub>2</sub>O<sub>3P</sub>/65钢复合材料的组织和性能[J]. 特种铸造及有色合金, 2017, 37(2):190-193.

    LIAO C, LU D H, YU J, et al. Microstructure and properties of Ti-activated Al<sub>2</sub>O<sub>3P</sub>/65steel composites[J]. Special Casting <italic>&</italic> Nonferrous Alloys,2017,37(2):190-193(in Chinese).
    [20] 赵馨月, 卢德宏, 郭红星, 等. 球状结构钢基MMCs/钢三维互穿网络复合材料的制备[J]. 特种铸造及有色合金, 2016, 36(8):852-855.

    ZHAO X Y, LU D H, GUO H X, et al. Preparation of composites of MMCs and steel with three dimensional interpenetrating network structure[J]. Special Casting <italic>&</italic> Nonferrous Alloys,2016,36(8):852-855(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  270
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2020-01-09
  • 网络出版日期:  2020-02-20
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回