留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性凹凸棒土吸附剂去除水中的Cr(VI)

王家宏 孙彤彤 陈瑶

王家宏, 孙彤彤, 陈瑶. 改性凹凸棒土吸附剂去除水中的Cr(VI)[J]. 复合材料学报, 2020, 37(8): 2029-2035 doi:  10.13801/j.cnki.fhclxb.20200103.001
引用本文: 王家宏, 孙彤彤, 陈瑶. 改性凹凸棒土吸附剂去除水中的Cr(VI)[J]. 复合材料学报, 2020, 37(8): 2029-2035 doi:  10.13801/j.cnki.fhclxb.20200103.001
Jiahong WANG, Tongtong SUN, Yao CHEN. Removal of Cr(VI) from water by modified attapulgite adsorbent[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2029-2035. doi: 10.13801/j.cnki.fhclxb.20200103.001
Citation: Jiahong WANG, Tongtong SUN, Yao CHEN. Removal of Cr(VI) from water by modified attapulgite adsorbent[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2029-2035. doi: 10.13801/j.cnki.fhclxb.20200103.001

改性凹凸棒土吸附剂去除水中的Cr(VI)

doi: 10.13801/j.cnki.fhclxb.20200103.001
基金项目: 陕西省教育厅专项科研计划(15JK1095)
详细信息
    通讯作者:

    王家宏,博士,教授,博士生导师,研究方向为环境功能材料、工业水处理 E-mail:wangjiahong@sust.edu.cn

  • 中图分类号: X523;TB332

Removal of Cr(VI) from water by modified attapulgite adsorbent

  • 摘要: 以凹凸棒土为载体,合成了乙二胺(EDA)改性凹凸棒土(ATP)吸附剂EDA/ATP复合材料。采用FTIR、TGA对吸附剂进行表征,同时将其应用于对水中Cr(VI)的吸附,研究了溶液初始浓度、吸附时间、溶液pH、Cl与PO43−阴离子浓度对吸附的影响。FTIR和TGA结果表明乙二胺已成功接枝到凹凸棒土表面。吸附实验表明,25℃时EDA/ATP复合材料对Cr(VI)的最大吸附容量为153.78 mg·g−1,吸附在800~900 min内达到平衡,吸附符合Freundlich吸附等温模型和拟二级动力学模型;在初始溶液pH为2~10条件下,随着pH的增加,吸附量先增加再降低,pH为3时,吸附量最大;Cl对吸附影响较小,PO43−对吸附的影响较大,当PO43−浓度达到20 mmol·L−1时,Cr(VI)最大吸附量下降了83 mg·g−1;实验表明EDA/ATP可作为一种潜在处理水中Cr(VI)的吸附剂。
  • 图  1  凹凸棒土(ATP)和乙二胺改性凹凸棒土(EDA/ATP)复合材料的红外光图谱

    Figure  1.  FTIR spectra of attapulgite (ATP) and ethylenediamine modified attapulgite (EDA/ATP) composite

    图  2  ATP和EDA/ATP复合材料的TGA曲线

    Figure  2.  TGA curves of ATP and EDA/ATP composite

    图  3  pH=3条件下EDA/ATP复合材料吸附剂在不同温度下对Cr(VI)的 吸附等温线

    Figure  3.  Adsorption isotherm of Cr(VI) adsorption by EDA/ATP composite at different temperatures under pH=3 condition

    图  4  25℃时吸附时间对EDA/ATP复合材料吸附剂去除Cr(VI)的影响

    Figure  4.  Effect of time on Cr(VI) adsorption by EDA/ATP composite at 25℃

    图  5  25℃时pH对EDA/ATP复合材料吸附剂去除Cr(VI)的影响

    Figure  5.  Effect of solution pH on Cr(VI) adsorption by EDA/ATP composite at 25℃

    Inset: Zeta potentials of EDA/ATP composite at different solution pH values

    图  6  EDA/ATP复合材料吸附Cr(VI)前后的XPS全谱(a)、吸附后的Cr 2p(b)及吸附前后N 1s(c)的XPS图谱

    Figure  6.  XPS full scan of EDA/ATP composite before and after Cr(VI) adsorption(a), the XPS spectra of Cr 2p after adsorption(b) and N 1s before and after adsorption(c)

    图  7  25℃时Cl和PO43−离子浓度对 EDA/ATP复合材料吸附剂去除Cr(VI)的影响

    Figure  7.  Effect of Cl and PO43− ionic concentrations on Cr(VI) adsorption by EDA/ATP composite at 25℃

    表  1  EDA/ATP复合材料吸附剂对Cr(VI)的吸附等温线拟合参数

    Table  1.   Adsorption isotherm fitting parameters of Cr(VI) by EDA/ATP composite adsorbent

    Temperature/℃Equation parameters of LangmuirEquation parameters of Freundlich
    qm/(mg·L−1)b/(L·mg−1) R2 n Kf R2
    15 130.55 0.87 0.866 17.17 100.27 0.990
    25 149.25 0.76 0.818 14.81 111.84 0.989
    35 136.05 1.06 0.825 30.21 104.40 0.993
    Notes:qm—Theoretical maximum adsorption capacity;b—Affinity coefficient;R2—Determination coefficient;n—Adsorption intensity;Kf—Freundlich constants related to adsorption capacity.
    下载: 导出CSV

    表  2  EDA/ATP复合材料吸附剂对Cr(VI)的拟一级、拟二级动力学参数

    Table  2.   Simulated parameters of Cr(VI) adsorption by EDA/ATP composite using pseudo-first-order and pseudo-second-order kinetics

    Adsorbentqe/(mg·g−1)Pseudo-first-order kinetics equationPseudo-second-order kinetics equation
    k1/ [g· (mg·min)−1]qcal/ (mg·g−1)R2k2/[g· (mg·min)−1]qcal/ (mg·g−1)R2
    EDA/ATP 127.85 1.38×10−3 105.12 0.837 2.26×10−4 147.06 0.998
    Notes: qe—Equilibrium adsorption capacity;qcal—Maximum theoretical adsorption capacity calculated by the corresponding kinetic equation;k1, k2—Pseudo-first-order kinetic and pseudo-second-order kinetic equation constants, respectively.
    下载: 导出CSV
  • [1] EGODAWATTE S, DATT A, BURNS E, et al. Chemical insight into the adsorption of chromium(Ⅲ) on iron oxide/mesoporous silica nanocomposites[J]. Langmuir,2015,31(27):7553-7562. doi:  10.1021/acs.langmuir.5b01483
    [2] GUAN X., CHEN Y, FAN H. Stepwise deprotonation of magnetite-supported gallic acid modulates oxidation state and adsorption-assisted translocation of hexavalent chromium[J]. ACS Applied Materials & Interfaces,2017,9(18):15525-15532.
    [3] KUMAR A, PAUL P, SANNA K N. Bio-nanomaterial scaffolds for effective removal of fluoride, chromium and dye[J]. ACS Sustainable Chemistry & Engineering,2016,5(1):895-903.
    [4] GOPALAKANNAN V, VISWANATHAN N. Development of nano-hydroxyapatite embedded gelatin biocomposite for effective Cr(VI) removal[J]. Industrial & Engineering Chemistry Research,2015,54(50):12561-12569.
    [5] 林国庆, 李文娟. 海蒿子和三价铁溶液绿色制备纳米铁及其去除六价铬的实验研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(S2):127-133.

    LIN G Q, LI W J. Green synthesis of iron nanoparticles using sargassum pallidum with ferric iron solution and its experimental study on hexavalent chromium removal[J]. Periodical of Ocean University of China,2018,48(S2):127-133(in Chinese).
    [6] QIU B, XU C, SUN D, et al. Polyaniline coated ethyl cellulose with improved hexavalent chromium removal[J]. Acs Sustainable Chemistry & Engineering,2014,2(8):2070-2080.
    [7] 任阳民, 梁宏, 邱阳, 等. 脉冲电解技术处理含铬废水实验研究[J]. 四川理工学院学报(自然科学版), 2017, 30(3):1-5.

    REN Y M, LIANG H, QIU Y, et al. Study on treatment of chromium-containing waste water by pulse-electrolysis technique[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition),2017,30(3):1-5(in Chinese).
    [8] LIU S, MISHRA S B, ZHANG Y, et al. Uptake of hexavalent chromium in electroplating wastewater by hydrothermally treated and functionalized sand and its sustainable reutilization for glass production[J]. Acs Sustainable Chemistry,2017,5(2):1509-1516. doi:  10.1021/acssuschemeng.6b02185
    [9] ABUBAKR A H, GURMAN S J, MURPHY L M, et al. Remediation of chromium(VI) by a methane-oxidizing bacterium[J]. Environmental Science & Technology,2010,44(1):400-405.
    [10] WANG T, CHEN Y, MA J, et al. Attapulgite nanoparticles-modified monolithic column for hydrophilic in-tube solid-phase microextraction of cyromazine and melamine[J]. Analytical Chemistry,2016,88(3):1535-1541. doi:  10.1021/acs.analchem.5b03478
    [11] 陈浩, 赵杰. 凹凸棒与酸化凹凸棒对Pb(Ⅱ)和Zn(Ⅱ)的选择吸附性差异[J]. 材料工程, 2008(10):154-157. doi:  10.3969/j.issn.1001-4381.2008.10.039

    CHEN H, ZHAO J. The difference of selective adsorption between palygorskite and acid-activated palygorskite for Pb(Ⅱ) and Zn(Ⅱ)[J]. Journal of Materials Engineering,2008(10):154-157(in Chinese). doi:  10.3969/j.issn.1001-4381.2008.10.039
    [12] 陈泳, 郝蓉蓉, 王洁琼. 酸改性聚吡咯/凹凸棒复合材料对胭脂红染料的吸附[J]. 化工新型材料, 2018, 46(4):148-151.

    CHEN Y, HAO R R, WANG J Q. Adsorption of carmine onto acid modified polypyrrole/attapulgite composite[J]. New Chemical Materials,2018,46(4):148-151(in Chinese).
    [13] YI X, SHAO D, LU X, et al. Spectroscopic investigation of enhanced adsorption of U(VI) and Eu(Ⅲ) on magnetic attapulgite in binary system[J]. Industrial & Engineering Chemistry Research,2018,57(22):7533-7543.
    [14] WANG Y, FENG Y, ZHANG X F, et al. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals[J]. Journal of Colloid and Interface Science,2018,514:190-198. doi:  10.1016/j.jcis.2017.12.035
    [15] CHEN L F, LIANG H W, LU Y, et al. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J]. Langmuir,2011,27(14):8998-9004. doi:  10.1021/la2017165
    [16] LI B, LI W, ZHANG Q, et al. Attapulgite as natural catalyst for glucose isomerization to fructose in water[J]. Catalysis Communications,2017,99:20-24. doi:  10.1016/j.catcom.2017.05.011
    [17] ZANG Z, HU Z, LI Z, et al. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nano tubes for selective solid-phase extraction and preconcentration of metal ions[J]. Journal of Hazardous Materials,2009,172(2):958-963.
    [18] WANG S, WANG J, ZHANG W, et al. Ethylenediamine modified graphene and its chemically responsive supramolecular hydrogels[J]. Industrial & Engineering Chemistry Research,2014,53(33):13205-13209.
    [19] 黄京晶, 陈宏, 刘江, 等. 改性水葫芦粉对水体中Hg2+的吸附[J]. 环境工程学报, 2017, 11(2):798-804. doi:  10.12030/j.cjee.201509164

    HUANG J J, CHEN H, LIU J. Adsorption of Hg2+ from aqueous solution by modified eichhornia crassipes powder[J]. Chinese Journal of Environmental Engineering,2017,11(2):798-804(in Chinese). doi:  10.12030/j.cjee.201509164
    [20] XING Y, CHEN X, WANG D, et al. Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater[J]. Environmental Science & Technology,2007,41(4):1439-1443.
    [21] 赵永纲. 氨基功能化纳米Fe3O4磁性高分子复合材料的合成、表征及其对废水中Cr(VI)的吸附研究[D]. 杭州: 浙江大学, 2010.

    ZHAO Y G. Synthesis and characterization of amino-functionalized nano-Fe3O4 magnetic polymer composites and their ad sorption of Cr(VI) in wastewater[D]. Hangzhou: Zhejiang University, 2010(in Chinese).
    [22] 鲁秀国, 黄燕梅, 曹禹楠. 氨基改性核桃壳对废水中Cr(VI)的静态吸附研究[J]. 离子交换与吸附, 2014, 30(6):491-498.

    LU X G, HUANG Y M, CAO Y N. Static adsorption of Cr(VI) in simulated wastewater by amino modified walnut shells[J]. Ion Exchange and Adsorption,2014,30(6):491-498(in Chinese).
    [23] JUN W, ZHANG H, HE P, et al. Cr(VI) removal from aqueous solution by dried activated sludge biomass[J]. Journal of Hazardous Materials,2010,176(1):697-703.
    [24] BAE S, SIHN Y, KYUNG D, et al. Molecular identification of Cr(VI) removal mechanism on vivianite surface[J]. Environmental Science & Technology,2018,52(18):10647-10650.
  • [1] 李泓, 张静, 陈可, 罗程严, 徐春波, 梁宸, 李波, 肖文谦, 廖晓玲.  羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200423.001
    [2] 束长朋, 王茂源, 周权, 宋宁, 倪礼忠.  苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200224.002
    [3] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报.
    [4] 李刊, 魏智强, 乔宏霞, 路承功, 黄尚攀, 杨博.  纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200218.002
    [5] 王春红, 左祺, 支中祥, 徐磊, SARANIZakaria, SHERAZHussain Siddique Yousfani.  聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响, 复合材料学报.
    [6] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [7] 段雯雯, 王建军, 辛振祥, 王洪振.  环氧化天然橡胶改性石墨烯-炭黑/天然橡胶复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191125.002
    [8] 李斌, 常飞, 肖尧, 李曙林, 孙晋茹.  碳纤维增强银粉改性树脂复合材料的雷击损伤效应, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191118.002
    [9] 张明艳, 王登辉, 吴子剑, 杨振华, 刘居.  改性碳纳米管/环氧树脂复合材料的介电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191105.001
    [10] 鲍玖文, 李树国, 张鹏, 赵铁军.  再生粗骨料硅烷浸渍处理对混凝土介质传输性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200316.002
    [11] 陈尚龙, 唐仕荣.  丙烯酸钠/玉米芯接枝共聚物的制备及其对Ni2+的吸附机制, 复合材料学报.
    [12] 阳雄南, 张效林, 聂孙建, 王哲, 卓光铭, 李少歌.  不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190902.002
    [13] 张志杨, 高卫民.  分子筛包嵌Ag团簇新型双功能材料用于水体杀菌, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200311.001
    [14] 胡海霞, 傅雅琴.  N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191204.001
    [15] 吴景, 曾威, 邝美霞, 钟成.  细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能, 复合材料学报.
    [16] 白成玲, 王磊, 朱振亚, 王旭东.  氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191016.001
    [17] 包炳钦, 张军, 宋卫锋, 刘建国, 冯嘉颖, 胡志成.  磁性复合凝胶球对Pb(Ⅱ)的吸附特性与机制, 复合材料学报.
    [18] 周浩然, 荆佳奇, 王德志, 范旭鹏, 袁镇, 赵立伟.  双马来酰亚胺工艺改性及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.003
    [19] 武鑫霞, 曹占平, 苏婷, 李岚.  Ce改性金属有机骨架材料对氟的吸附, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200225.003
    [20] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190918.002
  • 加载中
图(7) / 表ll (2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  30
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-12-13
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回