留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性凹凸棒土吸附剂去除水中的Cr(VI)

王家宏 孙彤彤 陈瑶

王家宏, 孙彤彤, 陈瑶. 改性凹凸棒土吸附剂去除水中的Cr(VI)[J]. 复合材料学报, 2020, 37(8): 2029-2035. doi: 10.13801/j.cnki.fhclxb.20200103.001
引用本文: 王家宏, 孙彤彤, 陈瑶. 改性凹凸棒土吸附剂去除水中的Cr(VI)[J]. 复合材料学报, 2020, 37(8): 2029-2035. doi: 10.13801/j.cnki.fhclxb.20200103.001
WANG Jiahong, SUN Tongtong, CHEN Yao. Removal of Cr(VI) from water by modified attapulgite adsorbent[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2029-2035. doi: 10.13801/j.cnki.fhclxb.20200103.001
Citation: WANG Jiahong, SUN Tongtong, CHEN Yao. Removal of Cr(VI) from water by modified attapulgite adsorbent[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2029-2035. doi: 10.13801/j.cnki.fhclxb.20200103.001

改性凹凸棒土吸附剂去除水中的Cr(VI)

doi: 10.13801/j.cnki.fhclxb.20200103.001
基金项目: 陕西省教育厅专项科研计划(15JK1095)
详细信息
    通讯作者:

    王家宏,博士,教授,博士生导师,研究方向为环境功能材料、工业水处理 E-mail:wangjiahong@sust.edu.cn

  • 中图分类号: X523;TB332

Removal of Cr(VI) from water by modified attapulgite adsorbent

  • 摘要: 以凹凸棒土为载体,合成了乙二胺(EDA)改性凹凸棒土(ATP)吸附剂EDA/ATP复合材料。采用FTIR、TGA对吸附剂进行表征,同时将其应用于对水中Cr(VI)的吸附,研究了溶液初始浓度、吸附时间、溶液pH、Cl与PO43−阴离子浓度对吸附的影响。FTIR和TGA结果表明乙二胺已成功接枝到凹凸棒土表面。吸附实验表明,25℃时EDA/ATP复合材料对Cr(VI)的最大吸附容量为153.78 mg·g−1,吸附在800~900 min内达到平衡,吸附符合Freundlich吸附等温模型和拟二级动力学模型;在初始溶液pH为2~10条件下,随着pH的增加,吸附量先增加再降低,pH为3时,吸附量最大;Cl对吸附影响较小,PO43−对吸附的影响较大,当PO43−浓度达到20 mmol·L−1时,Cr(VI)最大吸附量下降了83 mg·g−1;实验表明EDA/ATP可作为一种潜在处理水中Cr(VI)的吸附剂。

     

  • 图  1  凹凸棒土(ATP)和乙二胺改性凹凸棒土(EDA/ATP)复合材料的红外光图谱

    Figure  1.  FTIR spectra of attapulgite (ATP) and ethylenediamine modified attapulgite (EDA/ATP) composite

    图  2  ATP和EDA/ATP复合材料的TGA曲线

    Figure  2.  TGA curves of ATP and EDA/ATP composite

    图  3  pH=3条件下EDA/ATP复合材料吸附剂在不同温度下对Cr(VI)的 吸附等温线

    Figure  3.  Adsorption isotherm of Cr(VI) adsorption by EDA/ATP composite at different temperatures under pH=3 condition

    图  4  25℃时吸附时间对EDA/ATP复合材料吸附剂去除Cr(VI)的影响

    Figure  4.  Effect of time on Cr(VI) adsorption by EDA/ATP composite at 25℃

    图  5  25℃时pH对EDA/ATP复合材料吸附剂去除Cr(VI)的影响

    Figure  5.  Effect of solution pH on Cr(VI) adsorption by EDA/ATP composite at 25℃

    Inset: Zeta potentials of EDA/ATP composite at different solution pH values

    图  6  EDA/ATP复合材料吸附Cr(VI)前后的XPS全谱(a)、吸附后的Cr 2p(b)及吸附前后N 1s(c)的XPS图谱

    Figure  6.  XPS full scan of EDA/ATP composite before and after Cr(VI) adsorption(a), the XPS spectra of Cr 2p after adsorption(b) and N 1s before and after adsorption(c)

    图  7  25℃时Cl和PO43−离子浓度对 EDA/ATP复合材料吸附剂去除Cr(VI)的影响

    Figure  7.  Effect of Cl and PO43− ionic concentrations on Cr(VI) adsorption by EDA/ATP composite at 25℃

    表  1  EDA/ATP复合材料吸附剂对Cr(VI)的吸附等温线拟合参数

    Table  1.   Adsorption isotherm fitting parameters of Cr(VI) by EDA/ATP composite adsorbent

    Temperature/℃Equation parameters of LangmuirEquation parameters of Freundlich
    qm/(mg·L−1)b/(L·mg−1) R2 n Kf R2
    15 130.55 0.87 0.866 17.17 100.27 0.990
    25 149.25 0.76 0.818 14.81 111.84 0.989
    35 136.05 1.06 0.825 30.21 104.40 0.993
    Notes:qm—Theoretical maximum adsorption capacity;b—Affinity coefficient;R2—Determination coefficient;n—Adsorption intensity;Kf—Freundlich constants related to adsorption capacity.
    下载: 导出CSV

    表  2  EDA/ATP复合材料吸附剂对Cr(VI)的拟一级、拟二级动力学参数

    Table  2.   Simulated parameters of Cr(VI) adsorption by EDA/ATP composite using pseudo-first-order and pseudo-second-order kinetics

    Adsorbentqe/(mg·g−1)Pseudo-first-order kinetics equationPseudo-second-order kinetics equation
    k1/ [g· (mg·min)−1]qcal/ (mg·g−1)R2k2/[g· (mg·min)−1]qcal/ (mg·g−1)R2
    EDA/ATP 127.85 1.38×10−3 105.12 0.837 2.26×10−4 147.06 0.998
    Notes: qe—Equilibrium adsorption capacity;qcal—Maximum theoretical adsorption capacity calculated by the corresponding kinetic equation;k1, k2—Pseudo-first-order kinetic and pseudo-second-order kinetic equation constants, respectively.
    下载: 导出CSV
  • [1] EGODAWATTE S, DATT A, BURNS E, et al. Chemical insight into the adsorption of chromium(Ⅲ) on iron oxide/mesoporous silica nanocomposites[J]. Langmuir,2015,31(27):7553-7562. doi: 10.1021/acs.langmuir.5b01483
    [2] GUAN X., CHEN Y, FAN H. Stepwise deprotonation of magnetite-supported gallic acid modulates oxidation state and adsorption-assisted translocation of hexavalent chromium[J]. ACS Applied Materials & Interfaces,2017,9(18):15525-15532.
    [3] KUMAR A, PAUL P, SANNA K N. Bio-nanomaterial scaffolds for effective removal of fluoride, chromium and dye[J]. ACS Sustainable Chemistry & Engineering,2016,5(1):895-903.
    [4] GOPALAKANNAN V, VISWANATHAN N. Development of nano-hydroxyapatite embedded gelatin biocomposite for effective Cr(VI) removal[J]. Industrial & Engineering Chemistry Research,2015,54(50):12561-12569.
    [5] 林国庆, 李文娟. 海蒿子和三价铁溶液绿色制备纳米铁及其去除六价铬的实验研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(S2):127-133.

    LIN G Q, LI W J. Green synthesis of iron nanoparticles using sargassum pallidum with ferric iron solution and its experimental study on hexavalent chromium removal[J]. Periodical of Ocean University of China,2018,48(S2):127-133(in Chinese).
    [6] QIU B, XU C, SUN D, et al. Polyaniline coated ethyl cellulose with improved hexavalent chromium removal[J]. Acs Sustainable Chemistry & Engineering,2014,2(8):2070-2080.
    [7] 任阳民, 梁宏, 邱阳, 等. 脉冲电解技术处理含铬废水实验研究[J]. 四川理工学院学报(自然科学版), 2017, 30(3):1-5.

    REN Y M, LIANG H, QIU Y, et al. Study on treatment of chromium-containing waste water by pulse-electrolysis technique[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition),2017,30(3):1-5(in Chinese).
    [8] LIU S, MISHRA S B, ZHANG Y, et al. Uptake of hexavalent chromium in electroplating wastewater by hydrothermally treated and functionalized sand and its sustainable reutilization for glass production[J]. Acs Sustainable Chemistry,2017,5(2):1509-1516. doi: 10.1021/acssuschemeng.6b02185
    [9] ABUBAKR A H, GURMAN S J, MURPHY L M, et al. Remediation of chromium(VI) by a methane-oxidizing bacterium[J]. Environmental Science & Technology,2010,44(1):400-405.
    [10] WANG T, CHEN Y, MA J, et al. Attapulgite nanoparticles-modified monolithic column for hydrophilic in-tube solid-phase microextraction of cyromazine and melamine[J]. Analytical Chemistry,2016,88(3):1535-1541. doi: 10.1021/acs.analchem.5b03478
    [11] 陈浩, 赵杰. 凹凸棒与酸化凹凸棒对Pb(Ⅱ)和Zn(Ⅱ)的选择吸附性差异[J]. 材料工程, 2008(10):154-157. doi: 10.3969/j.issn.1001-4381.2008.10.039

    CHEN H, ZHAO J. The difference of selective adsorption between palygorskite and acid-activated palygorskite for Pb(Ⅱ) and Zn(Ⅱ)[J]. Journal of Materials Engineering,2008(10):154-157(in Chinese). doi: 10.3969/j.issn.1001-4381.2008.10.039
    [12] 陈泳, 郝蓉蓉, 王洁琼. 酸改性聚吡咯/凹凸棒复合材料对胭脂红染料的吸附[J]. 化工新型材料, 2018, 46(4):148-151.

    CHEN Y, HAO R R, WANG J Q. Adsorption of carmine onto acid modified polypyrrole/attapulgite composite[J]. New Chemical Materials,2018,46(4):148-151(in Chinese).
    [13] YI X, SHAO D, LU X, et al. Spectroscopic investigation of enhanced adsorption of U(VI) and Eu(Ⅲ) on magnetic attapulgite in binary system[J]. Industrial & Engineering Chemistry Research,2018,57(22):7533-7543.
    [14] WANG Y, FENG Y, ZHANG X F, et al. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals[J]. Journal of Colloid and Interface Science,2018,514:190-198. doi: 10.1016/j.jcis.2017.12.035
    [15] CHEN L F, LIANG H W, LU Y, et al. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J]. Langmuir,2011,27(14):8998-9004. doi: 10.1021/la2017165
    [16] LI B, LI W, ZHANG Q, et al. Attapulgite as natural catalyst for glucose isomerization to fructose in water[J]. Catalysis Communications,2017,99:20-24. doi: 10.1016/j.catcom.2017.05.011
    [17] ZANG Z, HU Z, LI Z, et al. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nano tubes for selective solid-phase extraction and preconcentration of metal ions[J]. Journal of Hazardous Materials,2009,172(2):958-963.
    [18] WANG S, WANG J, ZHANG W, et al. Ethylenediamine modified graphene and its chemically responsive supramolecular hydrogels[J]. Industrial & Engineering Chemistry Research,2014,53(33):13205-13209.
    [19] 黄京晶, 陈宏, 刘江, 等. 改性水葫芦粉对水体中Hg2+的吸附[J]. 环境工程学报, 2017, 11(2):798-804. doi: 10.12030/j.cjee.201509164

    HUANG J J, CHEN H, LIU J. Adsorption of Hg2+ from aqueous solution by modified eichhornia crassipes powder[J]. Chinese Journal of Environmental Engineering,2017,11(2):798-804(in Chinese). doi: 10.12030/j.cjee.201509164
    [20] XING Y, CHEN X, WANG D, et al. Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater[J]. Environmental Science & Technology,2007,41(4):1439-1443.
    [21] 赵永纲. 氨基功能化纳米Fe3O4磁性高分子复合材料的合成、表征及其对废水中Cr(VI)的吸附研究[D]. 杭州: 浙江大学, 2010.

    ZHAO Y G. Synthesis and characterization of amino-functionalized nano-Fe3O4 magnetic polymer composites and their ad sorption of Cr(VI) in wastewater[D]. Hangzhou: Zhejiang University, 2010(in Chinese).
    [22] 鲁秀国, 黄燕梅, 曹禹楠. 氨基改性核桃壳对废水中Cr(VI)的静态吸附研究[J]. 离子交换与吸附, 2014, 30(6):491-498.

    LU X G, HUANG Y M, CAO Y N. Static adsorption of Cr(VI) in simulated wastewater by amino modified walnut shells[J]. Ion Exchange and Adsorption,2014,30(6):491-498(in Chinese).
    [23] JUN W, ZHANG H, HE P, et al. Cr(VI) removal from aqueous solution by dried activated sludge biomass[J]. Journal of Hazardous Materials,2010,176(1):697-703.
    [24] BAE S, SIHN Y, KYUNG D, et al. Molecular identification of Cr(VI) removal mechanism on vivianite surface[J]. Environmental Science & Technology,2018,52(18):10647-10650.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  287
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-12-13
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回