留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高定向石墨/铜复合材料的制备和热物理性能

曾凡坤 马洪兵 江南 薛晨

曾凡坤, 马洪兵, 江南, 等. 高定向石墨/铜复合材料的制备和热物理性能[J]. 复合材料学报, 2020, 37(8): 1951-1959. doi: 10.13801/j.cnki.fhclxb.20191230.001
引用本文: 曾凡坤, 马洪兵, 江南, 等. 高定向石墨/铜复合材料的制备和热物理性能[J]. 复合材料学报, 2020, 37(8): 1951-1959. doi: 10.13801/j.cnki.fhclxb.20191230.001
ZENG Fankun, MA Hongbing, JIANG Nan, et al. Preparation and thermophysical properties of aligned graphite flake/Cu composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1951-1959. doi: 10.13801/j.cnki.fhclxb.20191230.001
Citation: ZENG Fankun, MA Hongbing, JIANG Nan, et al. Preparation and thermophysical properties of aligned graphite flake/Cu composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1951-1959. doi: 10.13801/j.cnki.fhclxb.20191230.001

高定向石墨/铜复合材料的制备和热物理性能

doi: 10.13801/j.cnki.fhclxb.20191230.001
基金项目: 国家自然科学基金(51501209);宁波自然科学基金(2017A610010)
详细信息
    通讯作者:

    曾凡坤,硕士,高级助理,研究方向为金属基导热复合材料 E-mail:zengfankun@nimte.ac.cn

  • 中图分类号: TB333

Preparation and thermophysical properties of aligned graphite flake/Cu composites

  • 摘要: 为了制备出具有优良热物理性能的石墨/铜复合材料,采用流延法将天然鳞片石墨定向排列在铜箔表面,并使用真空热压法制备具有层状结构的高定向石墨/铜复合材料。使用XRD和SEM等表征方法分析样品的微观形貌和成分,结果表明,在高温的作用下,流延所使用的溶剂充分挥发,热压后石墨仍高定向排列在相邻的两层铜箔之间,并相互搭接;部分熔化的铜在压力作用下渗透到石墨层的孔隙处,铜层之间相互贯穿。这种结构使石墨/铜复合材料具有优良的热物理性能。当石墨体积分数为20vol%~70vol%时,石墨/铜复合材料在高导热平面内热导率高达402~743 W/(m·K),抗弯强度达到126~48 MPa。深入讨论了石墨/铜复合材料的热传导机制,并建立了导热预测模型。

     

  • 图  1  材料的微观形貌:(a)原始石墨;(b)石墨镀覆在铜箔上

    Figure  1.  Microstructure of raw graphite(a) and Cu foil coated with graphite(b)

    图  2  石墨/铜复合材料的XRD图谱

    Figure  2.  XRD patterns of graphite/Cu composites

    图  3  石墨/铜复合材料分别在Z平面和X-Y平面内的微观形貌:((a)、(b))石墨体积分数为30 vol%;((c)、(d))石墨体积分数为50vol%;((e)、(f))石墨体积分数为70vol%

    Figure  3.  SEM images of graphite/Cu composites in Z plane and X-Y plane with different volume fractions of graphite: ((a),(b))30vol%; ((c),(d))50vol%; ((e),(f))70vol%

    图  4  不同石墨体积分数的石墨/铜复合材料石墨取向与X-Y平面夹角(β)的分布频率

    Figure  4.  Distribution frequencies of the angles(β) between graphite orientation and X-Y plane of graphite/Cu composites with different graphite volume fractions

    图  5  不同石墨体积分数的石墨/铜复合材料的热导率

    Figure  5.  Thermal conductivities of graphite/Cu composites with different graphite volume fractions

    图  6  石墨/铜复合材料的断口形貌

    Figure  6.  Fracture morphologies of graphite/Cu composites

    图  7  不同石墨/金属基复合材料的热导率-弯曲强度对比

    Figure  7.  Comparison of thermal conductivities and bending strengths of different graphite/metal matrix composites

    表  1  石墨和铜的物理参数

    Table  1.   Physical parameters of graphite and Cu

    MaterialDensity/(kg·m3)Specific heat capacity/(J·(kg·K)−1)Phonon velocity/(m·s−1)Thermal conductivity/(W·(m·K)−1)
    Graphite[11, 14] 2 260 710 14 800 1 000X-Y
    38Z
    Cu[22] 8 900 385 2 500 380
    下载: 导出CSV

    表  2  不同石墨体积分数的石墨/铜复合材料的热物理性能和弯曲强度

    Table  2.   Thermophysical properties and bending strengths of graphite/Cu composites with different graphite volume fractions

    Volume fraction of graphite/vol%Density/
    (kg·m3)
    Specific heat capacity/(J·(kg·K)−1)Thermal diffusion
    coefficient/(mm2·s−1)
    Thermal conductivity/
    (W/(m·K))
    Bending strength/MPa
    X-YZX-YZ
    20 7 452 409 132 47 402 143 126
    30 6 818 421 173 38 497 109 115
    40 6 124 436 215 28 574 75 101
    50 5 493 455 250 23 625 58 85
    60 4 811 478 296 19 681 44 66
    70 4 160 509 351 17 743 36 48
    下载: 导出CSV
  • [1] MALLIK S, EKERE N, BEST C, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2):355-362.
    [2] 张晓辉, 王强. 电子封装用金属基复合材料的研究现状[J]. 微纳米电子技术, 2018, 55(1):18-25, 44.

    ZHANG Xiaohui, WANG Qiang. Research status of metal matrix composites for electronic packaging[J]. Micro-nanoelectronic Technology,2018,55(1):18-25, 44(in Chinese).
    [3] 朱敏, 孙忠新, 高锋. 电子封装用金属基复合材料的研究现状[J]. 材料导报, 2013, 27(2):181-183.

    ZHU Min, SUN Zhongxin, GAO Feng. Research status of metal matrix composites for electronic packaging[J]. Materials Reports,2013,27(2):181-183(in Chinese).
    [4] 申胜飞, 李茜. 5G通信技术关键材料发展研究[J]. 科技中国, 2019(8):50-59.

    SHEN Shengfei, LI Qian. Research on key materials development of 5G communication technology[J]. Science and Technology of China,2019(8):50-59(in Chinese).
    [5] 黄凯, 白华, 朱英彬, 等. 石墨表面化学镀Cu对天然鳞片石墨/Al复合材料热物理性能的影响[J]. 复合材料学报, 2018, 35(4):920-926.

    HUANG Kai, BAI Hua, ZHU Yinbin, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with electroless Cu plating on graphite surface[J]. Acta Materiae Compositae Sinica,2018,35(4):920-926(in Chinese).
    [6] 吴赵兵, 张永刚, 颜克文. 某型基站大功率模块散热优化设计[J]. 电子世界, 2014(16):180-181. doi: 10.3969/j.issn.1003-0522.2014.16.177

    WU Zhaobing, ZHANG Yonggang, YAN Kewen. Optimization design of heat dissipation for a high-power module of a base station[J]. Electronics World,2014(16):180-181(in Chinese). doi: 10.3969/j.issn.1003-0522.2014.16.177
    [7] MIZUUCHI K, INOUE K, AGARI Y, et al. Processing of Al/SiC composites in continuous solid–liquid coexistent state by SPS and their thermal properties[J]. Composites Part B: Engineering,2012,43(4):2012-2019. doi: 10.1016/j.compositesb.2012.02.004
    [8] 王俊伟, 张现周, 薛晨, 等. 石墨表面镀Si对石墨/Al复合材料热物理性能的影响[J]. 复合材料学报, 2017, 34(4):608-615.

    WANG Junwei, ZHANG Xianzhou, XUE Chen, et al. Effects of Si coated on graphite surface on the thermal and mechanical properties of graphite/Al composites[J]. Acta Materiae Compositae Sinica,2017,34(4):608-615(in Chinese).
    [9] KOVÁČIK J Š, EMMER S, BIELEK J. Thermal conductivity of Cu-graphite composites[J]. International Journal of Thermal Sciences,2015,90:298-302. doi: 10.1016/j.ijthermalsci.2014.12.017
    [10] HU F, JIE D, ZHENG Y. Morphological effect of fillers on graphite reinforced polydicyclopentadiene based composites[J]. Polymer Composites,2014,35(10):1918-1925. doi: 10.1002/pc.22850
    [11] YUAN G, LI X, DONG Z, et al. Graphite blocks with preferred orientation and high thermal conductivity[J]. Carbon,2012,50(1):175-182. doi: 10.1016/j.carbon.2011.08.017
    [12] 徐群峰, 游志恒, 高鹏, 等. 石墨/铜复合材料的热学性能比较[J]. 热加工工艺, 2017, 46(10):136-138+142.

    XU Qunfeng, YOU Zhiheng, GAO Peng, et al. Comparison of thermal properties of graphite/Cu composite[J]. Hot Working Technology,2017,46(10):136-138+142(in Chinese).
    [13] ZHU Y, BAI H, XUE C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface[J]. RSC Advances,2016,6(100):98190-98196. doi: 10.1039/C6RA17804A
    [14] CHU K, WANG X H, WANG F, et al. Largely enhanced thermal conductivity of graphene/Cu composites with highly aligned graphene network[J]. Carbon,2018,127:102-112. doi: 10.1016/j.carbon.2017.10.099
    [15] ZHOU C, HUANG W, CHEN Z, et al. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment[J]. Composites Part B: Engineering,2015,70:256-262. doi: 10.1016/j.compositesb.2014.11.018
    [16] LI W, LIU Y, WU G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon,2015,95:545-551. doi: 10.1016/j.carbon.2015.08.063
    [17] ZHOU C, JI G, CHEN Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Materials <italic>&</italic> Design,2014,63:719-728.
    [18] CHEN Wang, HUA Bai, CHEN Xue, et al. On the influence of carbide coating on the thermal conductivity and flexural strength of X (X = SiC, TiC) coated graphite/Al composites[J]. RSC Advances,2016,6(109):107483-107490. doi: 10.1039/C6RA21754K
    [19] TRUONG H V, ZINSEMISTER G E. Experimental study of heat transfer in layered composites[J]. International Journal of Heat <italic>&</italic> Mass Transfer,1978,21(7):905-909.
    [20] PROGELHOF R C, THRONE J L, RUETSCH R R. Methods for predicting the thermal conductivity of composite systems: A review[J]. Polymer Engineering and Science,1976,16(9):615-625. doi: 10.1002/pen.760160905
    [21] NAN C W, BIRRINGER R, CLARKE D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics,1997,81(10):6692-6699. doi: 10.1063/1.365209
    [22] SWARTZ E T, POHL R O. Thermal boundary resistance[J]. Reviews of Modern Physics,1989,61(3):605. doi: 10.1103/RevModPhys.61.605
    [23] BAI H, XUE C, LYU J L, et al. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface[J]. Composites Part A: Applied Science and Manufacturing,2018,106:42-51. doi: 10.1016/j.compositesa.2017.11.019
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  280
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-11-16
  • 网络出版日期:  2019-12-31
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回