留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料

管宇鹏 齐晓俊 李帅 贺莹莹 刘红霞

管宇鹏, 齐晓俊, 李帅, 等. Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料[J]. 复合材料学报, 2020, 37(8): 1875-1883 doi:  10.13801/j.cnki.fhclxb.20191226.001
引用本文: 管宇鹏, 齐晓俊, 李帅, 等. Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料[J]. 复合材料学报, 2020, 37(8): 1875-1883 doi:  10.13801/j.cnki.fhclxb.20191226.001
Yupeng GUAN, Xiaojun QI, Shuai LI, Yingying HE, Hongxia LIU. Preparation of cellulose nanofiber-reduced graphene oxide/poly (methyl methacrylate) electromagnetic interference shielding composites by Pickering emulsion technology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1875-1883. doi: 10.13801/j.cnki.fhclxb.20191226.001
Citation: Yupeng GUAN, Xiaojun QI, Shuai LI, Yingying HE, Hongxia LIU. Preparation of cellulose nanofiber-reduced graphene oxide/poly (methyl methacrylate) electromagnetic interference shielding composites by Pickering emulsion technology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1875-1883. doi: 10.13801/j.cnki.fhclxb.20191226.001

Pickering乳液技术制备纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯电磁屏蔽复合材料

doi: 10.13801/j.cnki.fhclxb.20191226.001
基金项目: 广西自然科学基金(2016GXNSFAA380004);国家自然科学基金(21664006)
详细信息
    通讯作者:

    刘红霞,博士,教授,博士生导师,研究方向为功能高分子材料 E-mail:aozihx@foxmail.com

  • 中图分类号: TB332

Preparation of cellulose nanofiber-reduced graphene oxide/poly (methyl methacrylate) electromagnetic interference shielding composites by Pickering emulsion technology

  • 摘要: 利用纤维素纳米纤丝(CNF)和氧化石墨烯(GO)共稳定的含有聚甲基丙烯酸甲酯(PMMA)的Pickering乳液法,并经抽滤、还原、热压等工艺制备高性能的纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯(CNF-rGO/PMMA)电磁屏蔽复合材料。通过调节油相中聚合物的质量浓度、水油体积比,从而调控GO在复合材料中的质量分数。研究GO还原方式、质量分数及热压过程对所制备的CNF-rGO/PMMA电磁屏蔽复合材料的形貌结构与性能的影响。CNF-rGO/PMMA电磁屏蔽复合材料中GO经水合肼处理后有效还原为rGO,热压工艺使包裹在PMMA颗粒外的CNF-rGO片层与PMMA颗粒紧密堆积并形成交联的三维导电网络从而具有优异的导电率,在X波段不同频率(8.2~12.4 GHz)下具有良好的电磁屏蔽效能及稳定性,电磁屏蔽效能可达20 dB以上,可用于民用电磁屏蔽材料。
  • 图  1  GO的AFM图像(a)、GO片层高度(b)和XRD图谱(c)

    Figure  1.  AFM image(a), height(b) and Raman spectrum(c) of GO

    图  2  CNF的TEM图像

    Figure  2.  TEM image of CNF

    图  3  CNF-GO/PMMA与CNF-rGO/PMMA复合材料的XPS C1s谱图

    Figure  3.  XPS C1s spectra of CNF-GO/PMMA and CNF-rGO/PMMA composites

    图  4  CNF-GO/PMMA与CNF-rGO/PMMA复合材料的C、O元素比

    Figure  4.  C, O atomic ratio of CNF-GO/PMMA and CNF-rGO/PMMA composites

    图  5  GO、rGO-H、CNF-GO/PMMA和CNF-rGO/PMMA复合材料的拉曼图谱

    Figure  5.  Raman spectra of GO, rGO-H, CNF-GO/PMMA and CNF-rGO/PMMA composites

    图  6  S-rGO/PMMA-25H(a)、CNF-GO/PMMA-25(b)、CNF-rGO/PMMA-25(c)、CNF-rGO/PMMA-25H(d)复合材料的表面和断面及其煅烧后的SEM图像

    1—Surface; 2, 3—Fracture; 4—After annealing treatment

    Figure  6.  SEM images of the S-rGO/PMMA-25H (a), CNF-GO/PMMA-25 (b), CNF-rGO/PMMA-25 (c) and CNF-rGO/PMMA-25H (d) composites and their corresponding chars after annealing treatment

    图  7  PMMA、GO、rGO-H、CNF-GO/PMMA和CNF-rGO/PMMA复合材料的电导率(a)和不同GO质量分数CNF-rGO/PMMA复合材料的电导率(b)

    Figure  7.  Electrical conductivities of PMMA, GO, rGO-H, CNF-GO/PMMA and CNF-rGO/PMMA composites(a) and CNF-rGO/PMMA composites with different mass fractions of GO(b)

    图  8  CNF-rGO/PMMA电磁屏蔽复合材料在X波段(8.2~12.4 GHz)的总电磁屏蔽效能Etotal

    Inset: Image for testing thickness of CNF-rGO/PMMA-25H composite

    Figure  8.  Total electromagnetic interference shielding effectiveness Etotal at frequency of 8.2-12.4 GHz for CNF-rGO/PMMA electromagnetic interference shielding composites

    图  9  不同GO质量分数时所得电磁屏蔽复合材料在频率为10.2 GHz时的总屏蔽效能Etotal、电磁波吸收Ea和电磁波反射Er

    Figure  9.  Comparison of total EMI shielding effectiveness (Etotal), microwave absorption (Ea), and microwave reflection (Er) at the frequency of 10.2 GHz for the obtained EMI shielding composites with different mass fractions of GO

    表  1  纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯(CNF-rGO/PMMA)复合材料实验配方及样品

    Table  1.   Experimental formula and samples of cellulose nanofiber-reduced graphene oxide/poly (methyl methacrylate)(CNF-rGO/PMMA) composites

    Composite*Mass fraction of
    GO in composite/wt%
    PMMA concentration
    in oil phase/wt%
    Volume ratio
    of water to oil
    Reduction
    reagent
    Hot pressing
    method
    CNF-GO/PMMA-25 25 2 3∶1
    CNF-rGO/PMMA-25 25 2 3∶1 Two steps
    S-rGO/PMMA-31H 31 2 Hydrazine hydrate
    CNF-rGO/PMMA-31H 31 2 4∶1 Hydrazine hydrate Two steps
    CNF-rGO/PMMA-25H 25 2 3∶1 Hydrazine hydrate Two steps
    CNF-rGO/PMMA-19H 19 2 2∶1 Hydrazine hydrate Two steps
    CNF-rGO/PMMA-17H 17 5 4∶1 Hydrazine hydrate Two steps
    CNF-rGO/PMMA-12H 12 5 3∶1 Hydrazine hydrate Two steps
    CNF-rGO/PMMA-8H 8 5 2∶1 Hydrazine hydrate Two steps
    Notes:*—Mass fraction of GO in composites was calculated according to the mass fraction of the feeding GO, CNF and PMMA; CNF—Cellulose nanofiber; GO—Graphene oxide; RGO—Reduced graphene oxide; PMMA—Poly (methyl methacrylate); H—GO in composites was reduced by hydrazine hydrate.
    下载: 导出CSV
  • [1] SHER L. The effects of natural and man-made electromagnetic fields on mood and behavior: The role of sleep disturbances[J]. Medical Hypotheses,2000,54(4):630-633. doi:  10.1054/mehy.1999.0912
    [2] KHEIFETS L, AFIFI A A, SHIMKHADA R. Public health impact of extremely low-frequency electromagnetic fields[J]. Environmental Health Perspectives,2006,114(10):1532-1537. doi:  10.1289/ehp.8977
    [3] LI D K, CHEN H, FERBER J R, et al. Exposure to magnetic field non-ionizing radiation and the risk of miscarriage: A prospective cohort study[J]. Scientific Reports,2017,7(1):17541. doi:  10.1038/s41598-017-16623-8
    [4] 汪丽媛, 刘恋, 丁凯. 浅谈电磁污染的危害及防护措施[J]. 科技传播, 2010(13):141-143.

    WANG L Y, LIU L, DING K. Discussion on the dangers of electromagnetic pollution and the protective measures[J]. Public Communication of Science <italic>&</italic> Technology,2010(13):141-143(in Chinese).
    [5] EL-TANTAWY F, AL-GHAMDI A A, AAL N A. New PTCR thermistors, switching current, and electromagnetic shielding effectiveness from nanosized vanadium sesquioxides ceramic reinforced epoxy resin nanocomposites[J]. Journal of Applied Polymer Science,2010,115(2):817-825. doi:  10.1002/app.29083
    [6] KUMAR P, NARAYAN MAITI U, SIKDAR A, et al. Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects[J]. Polymer Reviews,2019,59(4):687-738. doi:  10.1080/15583724.2019.1625058
    [7] 刘琳, 张东. 电磁屏蔽材料的研究进展[J]. 功能材料, 2015, 46(3):3016-3022. doi:  10.3969/j.issn.1001-9731.2015.03.003

    LIU L, ZHANG D. Research progress of electromagnetic interference shielding materials[J]. Journal of Functional Materials,2015,46(3):3016-3022(in Chinese). doi:  10.3969/j.issn.1001-9731.2015.03.003
    [8] BRYNING M B, ISLAM M F, KIKKAWA J M, et al. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites[J]. Advanced Materials,2010,17(9):1186-1191.
    [9] YAN X, XIANG L, HE Q, et al. Electromagnetic interference shielding polymer nanocomposites[M]// Multifunctional Nanocomposites for Energy and Environmental Applications. Germany: Wiley−VCH Verlag GmbH & Co. KGaA, 2018.
    [10] 王艳, 范泽文, 赵建, 等. 3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料[J]. 复合材料学报, 2019, 36(1):7-12.

    WANG Y, FAN Z W, ZHAO J, et al. 3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica,2019,36(1):7-12(in Chinese).
    [11] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200. doi:  10.1038/nature04233
    [12] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308. doi:  10.1126/science.1156965
    [13] 王玉姣, 田明伟, 曲丽君. 石墨烯的研究现状与发展趋势[J]. 成都纺织高等专科学校学报, 2016, 33(1):1-18.

    WANG Y J, TIAN M W, QU L J. Research status and development trend of graphene[J]. Journal of Chengdu Textile College,2016,33(1):1-18(in Chinese).
    [14] SONG W L, CAO M S, LU M M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon,2014,66(1):67-76.
    [15] ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphene-polymer microcellular foams for electromagnetic interference shielding[J]. ACS Applied Materials <italic>&</italic> Interfaces,2011,3(3):918-924.
    [16] YANG H, LI Z, ZOU H, et al. Preparation of porous polyimide/in-situ reduced graphene oxide composite films for electromagnetic interference shielding[J]. Polymers for Advanced Technologies,2017,28(2):233-242. doi:  10.1002/pat.3879
    [17] PHAM V H, DANG T T, HUR S H, et al. Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction[J]. ACS Applied Materials <italic>&</italic> Interfaces,2012,4(5):2630.
    [18] YANG Z, LIU H, WU S, et al. A green method for preparing conductive elastomer composites with interconnected graphene network via pickering emulsion templating[J]. Chemical Engineering Journal,2018,342:112-119.
    [19] LIU X, QI X, GUAN Y, et al. Transparent and strong polymer nanocomposites generated from Pickering emulsion gels stabilized by cellulose nanofibrils[J]. Carbohydrate Polymers,2019,224:115202. doi:  10.1016/j.carbpol.2019.115202
    [20] 周昌兵, 徐阳, 刘馨月, 等. 剑麻纤维素纳米纤的制备及表征[J]. 高分子材料科学与工程, 2017, 33(10):130-134.

    ZHOU C B, XV Y, LIU X Y, et al. Fabrication and characterization of nanofibrillated cellulose from sisal fiber[J]. Polymeric Materials Science and Engineering,2017,33(10):130-134(in Chinese).
    [21] DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2015,448(7152):457-460.
    [22] TANAKA R, SAITO T, ISOGAI A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO<sub>2</sub> systems in water at pH 4.8 or 6.8[J]. International Journal of Biological Macromolecules,2012,51(3):228-234. doi:  10.1016/j.ijbiomac.2012.05.016
    [23] 赵静, 张红. 氧化石墨烯的可控还原及表征[J]. 化工进展, 2015, 34(9):3383-3387.

    ZHAO J, ZHANG H. Controllable reduction and characterization of graphene oxide[J]. Chemical Industry and Engineering Progress,2015,34(9):3383-3387(in Chinese).
  • [1] 王春红, 左祺, 支中祥, 徐磊, SARANIZakaria, SHERAZHussain Siddique Yousfani.  聚乙烯醇乳液改性对汉麻秸秆纤维增强水泥基复合材料性能影响, 复合材料学报.
    [2] 汪继承, 雷中秋, 王振, 曹志海, 戚栋明, 黄骅隽.  硅烷偶联剂MPS对SiO2-聚丙烯酸酯复合微球接枝交联结构及剪切取向能力的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190719.001
    [3] 段雯雯, 王建军, 辛振祥, 王洪振.  环氧化天然橡胶改性石墨烯-炭黑/天然橡胶复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191125.002
    [4] 吴景, 曾威, 邝美霞, 钟成.  细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能, 复合材料学报.
    [5] 蔡艳芝, 王源, 成来飞, 任璇璇, 李璇, 李阳.  CNT纸/SiC对称梯度层状复合材料的高温电磁屏蔽性能和介电性能, 复合材料学报.
    [6] 王宝霞, 李大纲, 汪钟凯.  聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能, 复合材料学报.
    [7] 欧华杰, 陈港, 朱朋辉, 魏渊, 李方.  纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200306.003
    [8] 梁晓蕾, 刘创华, 米欣, 朱伟东, 周强, 肖强.  SiO2或TiO2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191206.003
    [9] 杨贵荣, 王宁, 宋文明, 李亚敏, 马颖.  WC-氧化石墨烯/Ni复合熔覆层的制备及形成机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200203.001
    [10] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [11] 李泓, 张静, 陈可, 罗程严, 徐春波, 梁宸, 李波, 肖文谦, 廖晓玲.  羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200423.001
    [12] 丁梅杰, 张旭东, 魏智强, 黄尚攀, 姜金龙.  MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.002
    [13] 周可可, 唐亚丽, 卢立新, 潘嘹, 丘晓琳.  氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191120.003
    [14] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [15] 张钊滟, 马帅, 卢鑫, 郑玉婴, 林腾飞.  壳聚糖-氧化石墨烯/热塑性聚氨酯复合材料的原位溶液聚合及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200302.002
    [16] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [17] 张淑娟, 杨婕妤, 张翊青, 万正睿, 周立群, 王念贵.  Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191219.003
    [18] 白成玲, 王磊, 朱振亚, 王旭东.  氧化石墨烯/海藻酸钙水凝胶复合膜对水中Cd(II)的吸附, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191016.001
    [19] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报.
    [20] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191120.001
  • 加载中
图(9) / 表ll (1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  36
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 录用日期:  2019-12-08
  • 网络出版日期:  2019-12-26
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回