留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能

胡金娟 马春雨 王佳琳 王宁 秦福文 张庆瑜

胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6): 1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001
引用本文: 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6): 1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001
HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001
Citation: HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001

Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20191217.001
基金项目: 中央高校基本科研业务费专项资金(DUT19LAB14)
详细信息
    通讯作者:

    马春雨,博士,副教授,研究方向为半导体复合光催化材料 E-mail:chunyuma@dlut.edu.cn

  • 中图分类号: O643+36;TQ340.64

Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites

  • 摘要: 近年来,半导体光催化技术作为一项快速发展的新型环保技术,在降解水体中污染物和可再生清洁能源的生产领域有很大的应用前景。本文以所制备出的20 wt%类石墨烯碳氮化合物(g-C3N4)/TiO2为基质,利用水热法中纳米Ag颗粒部分氧化行为成功合成了Ag修饰异质结型Ag-Ag2O/TiO2-g-C3N4复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、光致荧光光谱(PL)、瞬态光电流响应等分析测试手段对Ag-Ag2O/TiO2-g-C3N4复合材料的晶体结构、形貌、光学性质等进行表征和分析。以亚甲基蓝溶液为目标降解物,研究了Ag-Ag2O/TiO2-g-C3N4复合材料的可见光催化性能。结果表明:在纳米Ag颗粒修饰的Ag-Ag2O/TiO2-g-C3N4复合材料中,Ag部分氧化成Ag2O;与g-C3N4的协同作用使Ag-Ag2O/TiO2-g-C3N4复合催化剂具有良好的可见光催化活性;可见光照射4 h后,Ag-Ag2O/TiO2-g-C3N4复合催化剂对亚甲基蓝的降解率接近50%。

     

  • 图  1  TiO2、类石墨烯碳氮化合物(g-C3N4)、g-C3N4/TiO2复合材料和Ag-Ag2O/TiO2-g-C3N4复合材料的XRD图谱

    Figure  1.  XRD patterns of TiO2, graphene-like carbon and nitrogen compounds(g-C3N4), g-C3N4/TiO2 composite and Ag-Ag2O/TiO2-g-C3N4 composite

    图  2  Ag-Ag2O/TiO2-g-C3N4复合材料的XPS图谱

    Figure  2.  XPS spectra of Ag-Ag2O/TiO2-g-C3N4 composite

    图  3  TiO2、g-C3N4、g-C3N4/TiO2 复合材料和Ag-Ag2O/TiO2-g-C3N4复合材料的SEM图像

    Figure  3.  SEM images of TiO2, g-C3N4, g-C3N4/TiO2 composite and Ag-Ag2O/TiO2-g-C3N4 composite

    图  4  TiO2、g-C3N4、g-C3N4/TiO2 复合材料和Ag-Ag2O/TiO2-g-C3N4复合材料的紫外-可见漫反射光谱(UV-Vis DRS)、内插图为样品的带隙宽图(a)和光致荧光(PL)光谱(b)

    Figure  4.  UV-visible diffuse reflectance spectra(UV–vis DRS), the inset is the (αhv)1/2 vs. photon energy plots(a) and photofluorescence(PL) spectra (b) of TiO2, g-C3N4, g-C3N4/TiO2 composite and Ag-Ag2O/TiO2-g-C3N4 composite

    图  5  TiO2、g-C3N4/TiO2复合材料和 Ag-Ag2O/TiO2-g-C3N4复合材料对MB溶液的降解曲线(a)和降解动力学拟合曲线(b)及瞬态光电流响应曲线(c)

    Figure  5.  Photocatalytic degradation (a) and kinetic fitting curves of degradation (b) of MB of TiO2, g-C3N4/TiO2 composite and Ag-Ag2O/TiO2-g-C3N4 composite and their corresponding photocurrent response curves under visible light irradiation (c)

    图  6  TiO2(a)、g-C3N4(b)和Ag2O(c)的带隙宽图 及其在0.5 mol/L Na2SO4溶液中的M-S曲线图(内插图)及Ag-Ag2O/TiO2-g-C3N4复合材料催化剂可能光催化机制示意图(d)

    Figure  6.  (αhv)1/2 vs. photon energy plots of TiO2(a), g-C3N4(b) and Ag2O(c), and the insets show the M-S plots for samples in 0.5 mol/L Na2SO4 aqueous solution and schematic of possible photocatalytic mechanisms of Ag-Ag2O/TiO2-g-C3N4 composite photocatalyst(d)

  • [1] SASTRE F, PUGA A. V, LIU L. Complete photocatalytic reduction of CO2 to ethane by H2 under solar light irradiation[J]. Journal of the American Chemical Society,2014,136:6798-6801. doi: 10.1021/ja500924t
    [2] ZHANG A C, ZHANG Z H, CHEN J J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg 0 removal[J]. Fuel Processing Technology,2015,135:178-185.
    [3] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38. doi: 10.1038/238037a0
    [4] 杨传玺, 王小宁, 杨帅. 纳米二氧化钛光催化及其降解印染废水研究进展[J]. 应用化工, 2017, 46(6):1185-1189. doi: 10.3969/j.issn.1671-3206.2017.06.037

    YANG Chuanxi, WANG Xiaoning, YANG Shuai. Research progress of nanometer titanium dioxide photocatalytic and its degradation of printing and dyeing wastewater[J]. Applied Chemicals,2017,46(6):1185-1189(in Chinese). doi: 10.3969/j.issn.1671-3206.2017.06.037
    [5] 吕烨, 田鹏, 辛世刚. 铁掺杂TiO2粉末的制备工艺与光催化活性研究[J]. 电大理工, 2011, 31(6):21-26.

    LV Ye, TIAN Peng, XIN Shigang. Study on preparation technology and photocatalytic activity of iron doped TiO2 powder[J]. Study of Science and Engineering at RTVU,2011,31(6):21-26(in Chinese).
    [6] BATZILL M, MORALES E H, DIEBOLD U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 anatase and rutile[J]. Physical Review Letters,2006,96:26103. doi: 10.1103/PhysRevLett.96.026103
    [7] YU P Y, LIN W R, JAMES B, et al. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion[J]. Energy & Environmental Science,2014,7:3934-3951.
    [8] ZHANG M Y, SHAO C L, MU J B, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J]. Crystengcomm,2012,14:605-612. doi: 10.1039/C1CE05974B
    [9] ZHANG X, LIU Y, LEE S T, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting[J]. Energy & Environmental Science,2014,7:1409-1419.
    [10] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Mater,2011,10:911-921. doi: 10.1038/nmat3151
    [11] DONG G P, ZHANG Y H, PAN Q W, et al. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobioblogy B-Biology,2014,20:33-50. doi: 10.1016/j.jphotochemrev.2014.04.002
    [12] 傅遍红, 郭淑慧, 傅敏. g-C3N4/TiO2复合纳米材料的制备及其光催化性能分析[J]. 功能材料, 2014, 45(12):12138-12144. doi: 10.3969/j.issn.1001-9731.2014.12.027

    FU Bianhong, GUO Shuhui, FU Min. Preparation of g-C3N4/TiO2 composite nanomaterials and analysis of photocatalytic properties[J]. Functional Materials,2014,45(12):12138-12144(in Chinese). doi: 10.3969/j.issn.1001-9731.2014.12.027
    [13] 董海军, 陈爱平, 何洪波. 溶剂热法制备TiO2/g-C3N4及其光催化性能[J]. 华东理工大学学报(自然科学版), 2013, 39(5):536-541. doi: 10.3969/j.issn.1006-3080.2013.05.005

    DONG Haijun, CHEN Aiping, HE Hongbo. Preparation TiO2/g-C3N4 and photocatalytic properties of solvent thermal method[J]. Journal of East China University (Natural Science Edition),2013,39(5):536-541(in Chinese). doi: 10.3969/j.issn.1006-3080.2013.05.005
    [14] 常玥, 妥小军, 移永杰. g-C3N4/TiO2@Ag复合材料的制备及可见光催化性能研究[J]. 西北师范大学学报, 2018, 54(2):63-69.

    CHANG Yue, TUO Xiaojun, YI Yongjie. Study on preparation and visible catalytic properties of g-C3N4/TiO2@Ag composites[J]. Journal of Northwest Normal University (Natural Science Edition),2018,54(2):63-69(in Chinese).
    [15] LIANG W J, LI J, JIN Y Q. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV[J]. Building and Environment,2012,51:345-350. doi: 10.1016/j.buildenv.2011.12.007
    [16] ATREI A, FERRAIE A M, SZIEBERTH D. Lepidocrocite-like structure of the TiO2 monolayer grown on Ag(100)[J]. Physical Chemistry Chemical Physics,2010,12:11587-11595. doi: 10.1039/c0cp00173b
    [17] 任芝军, 张聪, 郭振华. Ag2O/g-C3N4复合材料的制备及其光催化性能研究[J]. 广州化工, 2019, 47(11):26-29, 45. doi: 10.3969/j.issn.1001-9677.2019.11.014

    REN Zhijun, ZHANG Cong, GUO Zhenhua. Preparation and photocatalytic activity of Ag2O/g-C3N4 composites[J]. Guangzhou Chemical Industry,2019,47(11):26-29, 45(in Chinese). doi: 10.3969/j.issn.1001-9677.2019.11.014
    [18] 李荣荣, 王锐, 宫红. 热聚合制备ZnO/g-C3N4复合光催化剂及其光催化性能研究[J]. 化工新型材料, 2017, 45(6):217-223.

    LI Rongrong, WANG Rui, GONG Hong. Preparation of ZnO/g-C3N4 composite photocatalyst by thermal polymerization and its photocatalytic properties[J]. New Chemical Materials,2017,45(6):217-223(in Chinese).
    [19] 沈立言. 黑色TiO2/g-C3N4光催化剂的制备及其应用研究[D]. 哈尔滨: 黑龙江大学, 2017.

    SHEN Liyan. Preparation and application of black TiO2/g-C3N4 photocatalyst[D]. Harbin: Heilongjiang University, 2017(in Chinese).
    [20] SINGH J A, OVERBURY S H, DUDNEY N J. Gold nanoparticles supported on carbon nitride: Influence of surface hydroxyls on low temperature carbon monoxide oxidation[J]. ACS Catalysis,2012,2:1138-1146. doi: 10.1021/cs3001094
    [21] 唐蕴琦. 氮化碳聚合物半导体的形貌调控及其光催化性能研究[D]. 哈尔滨: 黑龙江大学, 2018.

    TANG Yunqi. Study on morphology regulation and photocatalytic properties of carbon nitride polymer semiconductors[D]. Harbin: Heilongjiang University, 2018 (in Chinese).
    [22] LI P P, CAO Y, MAO C J, et al. A TiO2/g-C3N4/Cds nanocomposite-based photoelectrochemical biosensor for ultrasensitive evaluation of T4 polynucleotide kinase activity[J]. Analytical Chemistry,2018,91(2):1563-1570.
    [23] WANG Y, ZENG Y P, LI B Q, et al. In-situ hydrothermal synthesized γ-Al2O3/O-g-C3N4 heterojunctions with enhanced visible-light photocatalytic activity in water splitting for hydrogen[J]. Journal of Energy Chemistry,2016,25(4):594-600. doi: 10.1016/j.jechem.2016.03.018
    [24] 陈参昌. 甲醛催化氧化Ag基催化剂性能的研究[D]. 西安: 西安石油大学, 2018.

    CHEN Canchang. Study on the performance of formaldehyde-catalyzed oxidation of Ag-based catalysts[D]. Xi’an: Xi’an Shiyou University, 2018(in Chinese).
    [25] 司华艳. 应用表面功能化的纳米颗粒制备新型纳米复合物的研究[D]. 兰州: 兰州大学, 2009.

    SI Huayan. Study on the preparation of new nanocompo-sites by surface functionalized nanoparticles[D]. Lanzhou: Lanzhou University, 2009(in Chinese).
    [26] LI Y, JI C N, LUY X, et al. In situ synthesis of carbon/g-C3N4 composites for visible catalysis by facile one-step pyrolysis of partially formaldehyde-modified dicyandiamide[J]. Materials Chemistry and Physics,2018,214:28-33. doi: 10.1016/j.matchemphys.2018.04.064
    [27] SU J Y, ZHU L, GENG P. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light[J]. Journal of Hazardous Materials,2016,316(5):159-168.
    [28] JING L Q, QU Y C, WANG B Q, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity[J]. Solar Energy Materials & Solar Cells,2006,90:1773-1787.
    [29] LIN X, XU D, XI Y. Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible-light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,513(1):117-124.
    [30] JIANG D L, ZHU J J, CHEN M. Highly efficient heterojunction photocatalyst based on nanoporous g-C3N4 sheets modified by Ag3PO4 nanoparticles: Synthesis and enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science,2014,417:115-120. doi: 10.1016/j.jcis.2013.11.042
    [31] XU M, HAN L, DONG S J. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible light photocatalytic activity[J]. ACS Applied Materials & Interfaces,2013,5:12533-12540.
  • 加载中
图(6)
计量
  • 文章访问数:  1451
  • HTML全文浏览量:  208
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 录用日期:  2019-12-06
  • 网络出版日期:  2019-12-18
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回