留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证

赵冰冰 方艳 武康 汪家权

赵冰冰, 方艳, 武康, 等. 蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证[J]. 复合材料学报, 2020, 37(8): 1894-1903 doi:  10.13801/j.cnki.fhclxb.20191206.001
引用本文: 赵冰冰, 方艳, 武康, 等. 蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证[J]. 复合材料学报, 2020, 37(8): 1894-1903 doi:  10.13801/j.cnki.fhclxb.20191206.001
Bingbing ZHAO, Yan FANG, Kang WU, Jiaquan WANG. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001
Citation: Bingbing ZHAO, Yan FANG, Kang WU, Jiaquan WANG. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001

蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证

doi: 10.13801/j.cnki.fhclxb.20191206.001
基金项目: 水体污染控制与治理科技重大专项(2012ZX07103-004)
详细信息
    通讯作者:

    汪家权,博士,教授,博士生导师,研究方向为地下水污染防治与修复 E-mail:jiaquan.wang@163.com

  • 中图分类号: TB332

Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology

  • 摘要: 为了实现水华蓝藻和青霉素菌渣的资源化利用,并进一步提升蓝藻粉-青霉素菌渣/低密度聚乙烯(LDPE)复合材料的力学性能,以菌渣与蓝藻粉共混物、LDPE为原料,通过响应面法优化实验方案,研究聚乙烯蜡(PE-wax)和白油、马来酸酐接枝聚乙烯(PE-g-MAH)、三乙醇胺对蓝藻粉-青霉素菌渣/LDPE复合材料力学性能的影响。当蓝藻粉-菌渣共混粉末与LDPE的质量比为15.00%和85.00%时,响应面回归方程的方差分析结果表明,PE-g-MAH和三乙醇胺两因素间的交互作用显著,润滑剂与PE-g-MAH、润滑剂与三乙醇胺之间的交互作用不显著;回归方程预测的最佳工艺参数如下:润滑剂、PE-g-MAH、三乙醇胺的质量比分别为3.08%、4.33%和4.23%,此条件下蓝藻粉-青霉素菌渣/LDPE复合材料的拉伸强度、弯曲强度和弯曲模量分别为12.30 MPa、9.03 MPa和220.00 MPa,相较于未添加助剂时的蓝藻粉-青霉素菌渣/LDPE复合材料分别提高了10.81%、29.74%和34.97%。
  • 图  1  响应因子分别为润滑剂与马来酸酐接枝聚乙烯(PE-g-MAH) (a)、润滑剂与三乙醇胺(b)、PE-g-MAH与三乙醇胺(c)时蓝藻粉-青霉素菌渣/LDPE复合材料以弯曲强度为响应变量时的等高线和曲面图

    Figure  1.  Contour and surface graph with flexural strength of algae powder-penicillin residue/LDPE composites as response variable when the response factors are lubricant and maleic anhydride grafted polyethylene (PE-g-MAH) (a), lubricant and triethanolamine (b), PE-g-MAH and triethanolamine (c)

    图  2  响应因子分别为润滑剂与PE-g-MAH (a)、润滑剂与三乙醇胺(b)、PE-g-MAH与三乙醇胺(c)时,蓝藻粉-青霉素菌渣/LDPE复合材料弯曲模量为响应变量时的等高线和曲面图

    Figure  2.  Contour and surface graph with flexural modulus of algae powder-penicillin residue/LDPE composites as response variable when the response factors are lubricant and PE-g-MAH (a), lubricant and triethanolamine (b), PE-g-MAH and triethanolamine (c)

    图  3  润滑剂质量比为0(a)、1.33%(b)和4.00%(c)时蓝藻粉-青霉素菌渣/LDPE复合材料的断面图像

    Figure  3.  SEM images of fracture section of algae powder-penicillin residue/LDPE composite with lubricant mass ratio of 0 (a), 1.33% (b)and 4.00% (c)

    图  4  蓝藻粉、青霉素菌渣及其共混物(a)、三乙醇胺增塑共混物(b)的FTIR图谱

    Figure  4.  FTIR spectra of algae powder, penicillin residue and their blends (a) and triethanolamine blends (b)

    图  5  蓝藻粉-青霉素菌渣/LDPE复合材料制备中的FTIR图谱

    Figure  5.  FTIR spectra of the preparation process of algae powder -penicillin residue/LDPE composites

    图  6  LDPE和蓝藻粉-青霉素菌渣/LDPE复合材料的熔融曲线

    Figure  6.  Melting curves of LDPE and algae powder-penicillin residue/LDPE composites

    表  1  响应面法优化蓝藻粉-青霉素菌渣/低密度聚乙烯(LDPE)复合材料力学性能实验的因素水平

    Table  1.   Response surface design of factors and levels by response surface method to optimize the mechanical properties of algae powder-penicillin residue/low density polyethylene (LDPE) composites

    LevelA: Polyethylene wax and white oil mass ratio/%B:PE-g-MAH mass ratio/%C: Triethanolamine mass ratio/%
    −1 1.33 2.00 3.00
    0 2.67 4.00 4.50
    1 4.00 6.00 6.00
    Notes:Total mass of algae powder blended with penicillin residue and LDPE is 100%, the mass ratio of other materials is the mass to the total mass of algae powder blended with penicillin residue and LDPE.
    下载: 导出CSV

    表  2  响应面法优化蓝藻粉-青霉素菌渣/LDPE复合材料力学性能实验的设计与结果

    Table  2.   Response surface design of experiments and results to optimize the mechanical properties of algae powder-penicillin residue/LDPE composites

    RunFactorsFlexural
    strength/MPa
    Flexural
    modulus/MPa
    A/%B/%C/%
    1 2.67 2.00 6.00 7.98 192.00
    2 4.00 4.00 3.00 8.81 209.00
    3 1.33 4.00 6.00 8.50 195.00
    4 1.33 4.00 3.00 8.78 197.00
    5 2.67 4.00 4.50 8.99 219.00
    6 4.00 2.00 4.50 8.43 201.00
    7 2.67 4.00 4.50 8.93 218.00
    8 4.00 4.00 6.00 8.58 206.00
    9 2.67 2.00 3.00 8.38 198.00
    10 2.67 6.00 6.00 8.45 201.00
    11 2.67 4.00 4.50 8.97 219.00
    12 4.00 6.00 4.50 8.73 206.00
    13 1.33 6.00 4.50 8.69 194.00
    14 2.67 6.00 3.00 8.68 202.00
    15 1.33 2.00 4.50 8.29 187.00
    16 2.67 4.00 4.50 9.01 220.00
    17 2.67 4.00 4.50 8.95 218.00
    下载: 导出CSV

    表  3  响应面法优化蓝藻粉-青霉素菌渣/LDPE复合材料力学性能实验中回归方程的方差分析

    Table  3.   Variance analysis of response surface experimental regression equation of optimization of the mechanical properties of algae powder-penicillin residue/LDPE composites

    SourceFlexural strengthFlexural modulus
    F valueP valueSignificanceF valueP valueSignificance
    Model 146.92 < 0.0001 ** 313.83 < 0.0001 **
    A 10.48 0.0143 * 461.73 < 0.0001 **
    B 269.15 < 0.0001 ** 120.19 < 0.0001 **
    C 161.87 < 0.0001 ** 27.69 0.0012 **
    AB 2.49 0.1585 1.54 0.2548
    AC 0.62 0.4559 0.38 0.5548
    BC 7.20 0.0314 * 9.62 0.0173 *
    A2 20.56 0.0027 ** 542.33 < 0.0001 **
    B2 558.95 < 0.0001 ** 1036.58 < 0.0001 **
    C2 226.80 < 0.0001 ** 404.28 < 0.0001 **
    Lack of FIT 1.01 0.4761 0.83 0.5413
    R2 0.9947 0.9975
    R2Adj 0.9880 0.9943
    CV 0.37 0.39
    Notes: F—Ratio of the mean square between groups to the mean square within groups; P—Confidence interval of F; Lack of FIT— Misfit term; R2—Multivariate correlation coefficient; R2Adj—Correction coefficient; CV—Coefficient of variation; *—Significant at P<0.05; **—Extremely significant at P<0.01.
    下载: 导出CSV
  • [1] ELANDER R P. Industrial production of beta-lactam antibiotics[J]. Appl Microbiol Biotechnol,2003,61(5-6):385-392. doi:  10.1007/s00253-003-1274-y
    [2] WISE R. Antimicrobial resistance: Priorities for action[J]. Journal of Antimicrobial Chemotherapy,2002,49(4):585-586. doi:  10.1093/jac/49.4.585
    [3] 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2):72-75.

    LI Z X, TIAN B K, ZUO J E, et al. Progress in treat and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering,2012,30(2):72-75(in Chinese).
    [4] 付欢, 刘惠玲, 王璞. 高效降解青霉素菌的筛选鉴定及降解效果研究[J]. 环境保护科学, 2015, 41(1):42-45. doi:  10.3969/j.issn.1004-6216.2015.01.009

    FU H, LIU H L, WANG P. Screening and identification of penicillin-degrading bacteria and its degradation effects[J]. Environmental Protection Science,2015,41(1):42-45(in Chinese). doi:  10.3969/j.issn.1004-6216.2015.01.009
    [5] GUO B, GONG L, DUAN E, et al. Characteristics of penicillin bacterial residue[J]. Journal of the Air <italic>&</italic> Waste Management Association,2012,62(4):485-488.
    [6] 张红娟. 抗生素菌渣堆肥化处理研究[D]. 郑州: 郑州大学, 2010.

    ZHANG H J. Research of the composting treatment of antibioticmushroom dregs[D]. Zhengzhou: Zhengzhou University, 2010 (in Chinese).
    [7] HILDEGARD E, KREUTZFELDT R. Process for the preparation of penicillin free mycelium masses from penicillin production culturesformed by fermentation, and the use as animal feeds and fertilizens: United States, 4601908[P]. 1986-07-22.
    [8] BANERJEE R K, SRINIVASAN K V. Recycling-reuse of penicillin mycelium as fish pond manure[J]. Biological Wastes,1988,23(2):107-116. doi:  10.1016/0269-7483(88)90068-7
    [9] 张红娟, 郭夏丽, 王岩. 林可霉素菌渣与牛粪联合堆肥实验研究[J]. 环境工程学报, 2011, 5(1):231-234.

    ZHANG H J, GUO X L, WANG Y. Study on co-composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering,2011,5(1):231-234(in Chinese).
    [10] 苏建文, 王俊超, 许尚营, 等. 红霉素菌渣厌氧消化实验研究[J]. 中国沼气, 2013, 31(5):25-28. doi:  10.3969/j.issn.1000-1166.2013.05.005

    SU J W, WANG J C, XU S Y, et al. Anaerobic digestion of bacterial residues from erythromycin production[J]. China Biogas,2013,31(5):25-28(in Chinese). doi:  10.3969/j.issn.1000-1166.2013.05.005
    [11] 张晔. 抗生素菌渣与煤粉配合成浆性能及燃烧动力学研究[D]. 淮南: 安徽理工大学, 2010.

    ZHANG Y. Study on performance and combustion kinetics of synthetic pulp of pntibiotic slag and coal powder[D]. Huainan: Anhui University of Science & Technology, 2010 (in Chinese).
    [12] 高勤. 土霉素菌渣活性炭的制备及应用研究[D]. 石家庄: 河北科技大学, 2012.

    GAO Q. Study on preparation and application of oxytetracycline bacterial residue-activation carbon[D]. Shijiazhuang: Hebei University of Science and Technology, 2012 (in Chinese).
    [13] 邵雪玲, 佐藤実 , 山口敏康, 等. 蓝藻Trichodesmium thiebautii营养成分分析[J]. 华中农业大学学报, 2001, 20(3):279-282. doi:  10.3321/j.issn:1000-2421.2001.03.021

    SHAO X L, SATO M, YAMAGUCHI T, et al. Nutritious components analysis on Trichodesmium thiebautii[J]. Journal of Huazhong Agricultural University,2001,20(3):279-282(in Chinese). doi:  10.3321/j.issn:1000-2421.2001.03.021
    [14] 赵冰冰, 张发宇, 陈裕, 等. 四步盐析提取巢湖新鲜蓝藻中藻蓝蛋白及其稳定性[J]. 环境工程学报, 2016, 10(5):2302-2308. doi:  10.12030/j.cjee.2016050

    ZHAO B B, ZHANG F Y, CHEN Y, et al. Extraction by four steps’ salting-out and stability of phycocyanin from fresh blue algae in Lake Chaohu[J]. Chinese Journal of Environmental Engineering,2016,10(5):2302-2308(in Chinese). doi:  10.12030/j.cjee.2016050
    [15] 牛娜, 罗学刚, 李纪伟, 等. 胶原蛋白/低密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2014, 31(4):944-948.

    NIU N, LUO X G, LI J W, et al. Preparation and performance of hydrolyzed collagen/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2014,31(4):944-948(in Chinese).
    [16] 盛旭敏, 李又兵, 王选伦, 等. 食用级淀粉/低密度聚乙烯复合材料研究[J]. 重庆理工大学学报, 2011, 25(2): 37-42.

    SHENG X M, LI Y B, WANG X L, et al. Study on composite material of LDPE and edible starch[J]. Journal of Chongqing University of Technology, 2011, 25(2): 37-42(in Chinese).
    [17] 陈李红. 天然蛋白质可降解热塑膜及纺织浆料的制备与性能研究[D]. 上海: 东华大学, 2013.

    CHEN L H. Research on preparation and performance of biodegradable thermoplastic films and textile sizes from natural proteins[D]. Shanghai: Donghua University, 2013 (in Chinese).
    [18] CHALERMTHAI B, CHAN W Y, BASTIDAS-OYANEDEL J R, et al. Preparation and characterization of whey protein-based polymers produced from residual dairy streams[J]. Polymers,2019,11(4):722-732. doi:  10.3390/polym11040722
    [19] 彭旭锵. PP/超细羽绒粉体共混改性及可纺性研究[D]. 武汉: 武汉科技学院, 2007.

    PENG X Q. Study on blending modification and spinnability of PP/superfine down powder[D]. Wuhan: Wuhan University of Science and Engineering, 2007(in Chinese).
    [20] 朱凌波, 李新功, 杨凯, 等. 几种不同改性剂对稻草/丙烯腈-丁二烯-苯乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1791-1799.

    ZHU L B, LI X G, YANG K, et al. Performance enhancement of straw / acrylonitrile-butadiene-styrene composites modified by several different kinds of modifiers[J]. Acta Materiae Compositae Sinica,2018,35(7):1791-1799(in Chinese).
    [21] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the Peoples Republic of China. Plastic the measurement of tensile properties: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese).
    [22] 中国国家标准化管理委员会. 塑料弯曲性能试验方法: GB/T 9341—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the Peoples Republic of China. Plastic determination of flexural properties: GB/T 9341—2000[S]. Beijing: Standards Press of China, 2000 (in Chinese).
    [23] VUONG Q V, GOLDING J B, NGUYEN M H, et al. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves[J]. Journal of Food Engineering,2012,110:1-8.
    [24] ZHANG Q A, YUE X F, FAN X H, et al. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder[J]. Food Chemistry,2009,116:513-518.
    [25] 熊勇, 李冬梅, 刘江波, 等. 响应面法分析优化藻蓝蛋白色素提取工艺的研究[J]. 中国食品添加剂, 2018(11):107-112.

    XIONG Y, LI D M, LIU J B, et al. Optimization of the extraction technology of phycocyanin from Spirulina using response surface methodology[J]. China Food Additives,2018(11):107-112(in Chinese).
    [26] NAKA K, NAKANMURA T, OHKI A, et al. Chitin-graft-poly(2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent[J]. International Journal of Biological Macromolecules,1998,23(4):14-17.
    [27] PAWLAK A, MUCHA A. Thermogravimetric and FTIR studies of chitosan blends[J]. Thermochimica Acta,2003,296(1-2):14-17.
  • [1] 张扬, 曹玉贵, 胡志礼.  基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191223.002
    [2] 欧华杰, 陈港, 朱朋辉, 魏渊, 李方.  纳米纤维素-碳纳米管/热塑性聚氨酯复合薄膜的制备及应变响应性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200306.003
    [3] 曾伟, 丁一宁.  荷载作用下结构型纤维对混凝土裂缝渗透率演化的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191213.001
    [4] 周宏元, 贾昆程, 王小娟, 刘路.  负泊松比三明治结构填充泡沫混凝土的面内压缩性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191207.001
    [5] 王计真, 刘小川.  考虑面内载荷的复合材料层合板冲击性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191125.001
    [6] 陈萍, 赵月青, 陈菲, 张博明.  单向碳纤维/环氧树脂预浸料叠层的面内变形行为, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190730.006
    [7] 梅生启, 唐广, 杨斌, 王元丰.  基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191230.002
    [8] 栾建泽, 那景新, 谭伟, 慕文龙, 秦国锋.  服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191014.001
    [9] 汪洋, 吴志斌, 刘富.  复合材料货舱地板立柱压溃响应试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200111.001
    [10] 李庆辉, 孔维纳, 李喆, 王少敏, 王绍凯, 顾轶卓, 李敏.  基于高Q腔法测试氮化硅纤维的介电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200115.003
    [11] 赵秋红, 董硕, 朱涵.  钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型, 复合材料学报.
    [12] 赵晟, 张继文.  一种基于复合材料剩余强度的衍生疲劳损伤模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191224.002
    [13] 朱秀杰, 熊超, 殷军辉, 尹德军, 邓辉咏, 李宝晨.  基于复合材料层合箱梁改进解析模型计算等效刚度, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190706.001
    [14] 许飞, 李磊, 杨胜春.  单向复合材料横向裂纹黏弹性损伤演化模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190902.001
    [15] 曹玉贵, 赵国旭, 尹亚运.  基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测, 复合材料学报.
    [16] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [17] 何柏灵, 葛东云.  复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.004
    [18] 王江, 翟玉玲, 马明琰, 姚沛滔, 李龙.  基于径向基神经网络模型预测CuO-ZnO/(乙二醇-水)混合纳米流体导热系数, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.001
    [19] 肖华强, 赵思皓.  Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及其交互作用机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200111.003
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报.
  • 加载中
图(6) / 表ll (3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  33
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 录用日期:  2019-12-03
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回