留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证

赵冰冰 方艳 武康 汪家权

赵冰冰, 方艳, 武康, 等. 蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证[J]. 复合材料学报, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001
引用本文: 赵冰冰, 方艳, 武康, 等. 蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证[J]. 复合材料学报, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001
ZHAO Bingbing, FANG Yan, WU Kang, et al. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001
Citation: ZHAO Bingbing, FANG Yan, WU Kang, et al. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001

蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证

doi: 10.13801/j.cnki.fhclxb.20191206.001
基金项目: 水体污染控制与治理科技重大专项(2012ZX07103-004)
详细信息
    通讯作者:

    汪家权,博士,教授,博士生导师,研究方向为地下水污染防治与修复 E-mail:jiaquan.wang@163.com

  • 中图分类号: TB332

Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology

  • 摘要: 为了实现水华蓝藻和青霉素菌渣的资源化利用,并进一步提升蓝藻粉-青霉素菌渣/低密度聚乙烯(LDPE)复合材料的力学性能,以菌渣与蓝藻粉共混物、LDPE为原料,通过响应面法优化实验方案,研究聚乙烯蜡(PE-wax)和白油、马来酸酐接枝聚乙烯(PE-g-MAH)、三乙醇胺对蓝藻粉-青霉素菌渣/LDPE复合材料力学性能的影响。当蓝藻粉-菌渣共混粉末与LDPE的质量比为15.00%和85.00%时,响应面回归方程的方差分析结果表明,PE-g-MAH和三乙醇胺两因素间的交互作用显著,润滑剂与PE-g-MAH、润滑剂与三乙醇胺之间的交互作用不显著;回归方程预测的最佳工艺参数如下:润滑剂、PE-g-MAH、三乙醇胺的质量比分别为3.08%、4.33%和4.23%,此条件下蓝藻粉-青霉素菌渣/LDPE复合材料的拉伸强度、弯曲强度和弯曲模量分别为12.30 MPa、9.03 MPa和220.00 MPa,相较于未添加助剂时的蓝藻粉-青霉素菌渣/LDPE复合材料分别提高了10.81%、29.74%和34.97%。

     

  • 图  1  响应因子分别为润滑剂与马来酸酐接枝聚乙烯(PE-g-MAH) (a)、润滑剂与三乙醇胺(b)、PE-g-MAH与三乙醇胺(c)时蓝藻粉-青霉素菌渣/LDPE复合材料以弯曲强度为响应变量时的等高线和曲面图

    Figure  1.  Contour and surface graph with flexural strength of algae powder-penicillin residue/LDPE composites as response variable when the response factors are lubricant and maleic anhydride grafted polyethylene (PE-g-MAH) (a), lubricant and triethanolamine (b), PE-g-MAH and triethanolamine (c)

    图  2  响应因子分别为润滑剂与PE-g-MAH (a)、润滑剂与三乙醇胺(b)、PE-g-MAH与三乙醇胺(c)时,蓝藻粉-青霉素菌渣/LDPE复合材料弯曲模量为响应变量时的等高线和曲面图

    Figure  2.  Contour and surface graph with flexural modulus of algae powder-penicillin residue/LDPE composites as response variable when the response factors are lubricant and PE-g-MAH (a), lubricant and triethanolamine (b), PE-g-MAH and triethanolamine (c)

    图  3  润滑剂质量比为0(a)、1.33%(b)和4.00%(c)时蓝藻粉-青霉素菌渣/LDPE复合材料的断面图像

    Figure  3.  SEM images of fracture section of algae powder-penicillin residue/LDPE composite with lubricant mass ratio of 0 (a), 1.33% (b)and 4.00% (c)

    图  4  蓝藻粉、青霉素菌渣及其共混物(a)、三乙醇胺增塑共混物(b)的FTIR图谱

    Figure  4.  FTIR spectra of algae powder, penicillin residue and their blends (a) and triethanolamine blends (b)

    图  5  蓝藻粉-青霉素菌渣/LDPE复合材料制备中的FTIR图谱

    Figure  5.  FTIR spectra of the preparation process of algae powder -penicillin residue/LDPE composites

    图  6  LDPE和蓝藻粉-青霉素菌渣/LDPE复合材料的熔融曲线

    Figure  6.  Melting curves of LDPE and algae powder-penicillin residue/LDPE composites

    表  1  响应面法优化蓝藻粉-青霉素菌渣/低密度聚乙烯(LDPE)复合材料力学性能实验的因素水平

    Table  1.   Response surface design of factors and levels by response surface method to optimize the mechanical properties of algae powder-penicillin residue/low density polyethylene (LDPE) composites

    LevelA: Polyethylene wax and white oil mass ratio/%B:PE-g-MAH mass ratio/%C: Triethanolamine mass ratio/%
    −1 1.33 2.00 3.00
    0 2.67 4.00 4.50
    1 4.00 6.00 6.00
    Notes:Total mass of algae powder blended with penicillin residue and LDPE is 100%, the mass ratio of other materials is the mass to the total mass of algae powder blended with penicillin residue and LDPE.
    下载: 导出CSV

    表  2  响应面法优化蓝藻粉-青霉素菌渣/LDPE复合材料力学性能实验的设计与结果

    Table  2.   Response surface design of experiments and results to optimize the mechanical properties of algae powder-penicillin residue/LDPE composites

    RunFactorsFlexural
    strength/MPa
    Flexural
    modulus/MPa
    A/%B/%C/%
    1 2.67 2.00 6.00 7.98 192.00
    2 4.00 4.00 3.00 8.81 209.00
    3 1.33 4.00 6.00 8.50 195.00
    4 1.33 4.00 3.00 8.78 197.00
    5 2.67 4.00 4.50 8.99 219.00
    6 4.00 2.00 4.50 8.43 201.00
    7 2.67 4.00 4.50 8.93 218.00
    8 4.00 4.00 6.00 8.58 206.00
    9 2.67 2.00 3.00 8.38 198.00
    10 2.67 6.00 6.00 8.45 201.00
    11 2.67 4.00 4.50 8.97 219.00
    12 4.00 6.00 4.50 8.73 206.00
    13 1.33 6.00 4.50 8.69 194.00
    14 2.67 6.00 3.00 8.68 202.00
    15 1.33 2.00 4.50 8.29 187.00
    16 2.67 4.00 4.50 9.01 220.00
    17 2.67 4.00 4.50 8.95 218.00
    下载: 导出CSV

    表  3  响应面法优化蓝藻粉-青霉素菌渣/LDPE复合材料力学性能实验中回归方程的方差分析

    Table  3.   Variance analysis of response surface experimental regression equation of optimization of the mechanical properties of algae powder-penicillin residue/LDPE composites

    SourceFlexural strengthFlexural modulus
    F valueP valueSignificanceF valueP valueSignificance
    Model 146.92 < 0.0001 ** 313.83 < 0.0001 **
    A 10.48 0.0143 * 461.73 < 0.0001 **
    B 269.15 < 0.0001 ** 120.19 < 0.0001 **
    C 161.87 < 0.0001 ** 27.69 0.0012 **
    AB 2.49 0.1585 1.54 0.2548
    AC 0.62 0.4559 0.38 0.5548
    BC 7.20 0.0314 * 9.62 0.0173 *
    A2 20.56 0.0027 ** 542.33 < 0.0001 **
    B2 558.95 < 0.0001 ** 1036.58 < 0.0001 **
    C2 226.80 < 0.0001 ** 404.28 < 0.0001 **
    Lack of FIT 1.01 0.4761 0.83 0.5413
    R2 0.9947 0.9975
    R2Adj 0.9880 0.9943
    CV 0.37 0.39
    Notes: F—Ratio of the mean square between groups to the mean square within groups; P—Confidence interval of F; Lack of FIT— Misfit term; R2—Multivariate correlation coefficient; R2Adj—Correction coefficient; CV—Coefficient of variation; *—Significant at P<0.05; **—Extremely significant at P<0.01.
    下载: 导出CSV
  • [1] ELANDER R P. Industrial production of beta-lactam antibiotics[J]. Appl Microbiol Biotechnol,2003,61(5-6):385-392. doi: 10.1007/s00253-003-1274-y
    [2] WISE R. Antimicrobial resistance: Priorities for action[J]. Journal of Antimicrobial Chemotherapy,2002,49(4):585-586. doi: 10.1093/jac/49.4.585
    [3] 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2):72-75.

    LI Z X, TIAN B K, ZUO J E, et al. Progress in treat and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering,2012,30(2):72-75(in Chinese).
    [4] 付欢, 刘惠玲, 王璞. 高效降解青霉素菌的筛选鉴定及降解效果研究[J]. 环境保护科学, 2015, 41(1):42-45. doi: 10.3969/j.issn.1004-6216.2015.01.009

    FU H, LIU H L, WANG P. Screening and identification of penicillin-degrading bacteria and its degradation effects[J]. Environmental Protection Science,2015,41(1):42-45(in Chinese). doi: 10.3969/j.issn.1004-6216.2015.01.009
    [5] GUO B, GONG L, DUAN E, et al. Characteristics of penicillin bacterial residue[J]. Journal of the Air <italic>&</italic> Waste Management Association,2012,62(4):485-488.
    [6] 张红娟. 抗生素菌渣堆肥化处理研究[D]. 郑州: 郑州大学, 2010.

    ZHANG H J. Research of the composting treatment of antibioticmushroom dregs[D]. Zhengzhou: Zhengzhou University, 2010 (in Chinese).
    [7] HILDEGARD E, KREUTZFELDT R. Process for the preparation of penicillin free mycelium masses from penicillin production culturesformed by fermentation, and the use as animal feeds and fertilizens: United States, 4601908[P]. 1986-07-22.
    [8] BANERJEE R K, SRINIVASAN K V. Recycling-reuse of penicillin mycelium as fish pond manure[J]. Biological Wastes,1988,23(2):107-116. doi: 10.1016/0269-7483(88)90068-7
    [9] 张红娟, 郭夏丽, 王岩. 林可霉素菌渣与牛粪联合堆肥实验研究[J]. 环境工程学报, 2011, 5(1):231-234.

    ZHANG H J, GUO X L, WANG Y. Study on co-composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering,2011,5(1):231-234(in Chinese).
    [10] 苏建文, 王俊超, 许尚营, 等. 红霉素菌渣厌氧消化实验研究[J]. 中国沼气, 2013, 31(5):25-28. doi: 10.3969/j.issn.1000-1166.2013.05.005

    SU J W, WANG J C, XU S Y, et al. Anaerobic digestion of bacterial residues from erythromycin production[J]. China Biogas,2013,31(5):25-28(in Chinese). doi: 10.3969/j.issn.1000-1166.2013.05.005
    [11] 张晔. 抗生素菌渣与煤粉配合成浆性能及燃烧动力学研究[D]. 淮南: 安徽理工大学, 2010.

    ZHANG Y. Study on performance and combustion kinetics of synthetic pulp of pntibiotic slag and coal powder[D]. Huainan: Anhui University of Science & Technology, 2010 (in Chinese).
    [12] 高勤. 土霉素菌渣活性炭的制备及应用研究[D]. 石家庄: 河北科技大学, 2012.

    GAO Q. Study on preparation and application of oxytetracycline bacterial residue-activation carbon[D]. Shijiazhuang: Hebei University of Science and Technology, 2012 (in Chinese).
    [13] 邵雪玲, 佐藤実 , 山口敏康, 等. 蓝藻Trichodesmium thiebautii营养成分分析[J]. 华中农业大学学报, 2001, 20(3):279-282. doi: 10.3321/j.issn:1000-2421.2001.03.021

    SHAO X L, SATO M, YAMAGUCHI T, et al. Nutritious components analysis on Trichodesmium thiebautii[J]. Journal of Huazhong Agricultural University,2001,20(3):279-282(in Chinese). doi: 10.3321/j.issn:1000-2421.2001.03.021
    [14] 赵冰冰, 张发宇, 陈裕, 等. 四步盐析提取巢湖新鲜蓝藻中藻蓝蛋白及其稳定性[J]. 环境工程学报, 2016, 10(5):2302-2308. doi: 10.12030/j.cjee.2016050

    ZHAO B B, ZHANG F Y, CHEN Y, et al. Extraction by four steps’ salting-out and stability of phycocyanin from fresh blue algae in Lake Chaohu[J]. Chinese Journal of Environmental Engineering,2016,10(5):2302-2308(in Chinese). doi: 10.12030/j.cjee.2016050
    [15] 牛娜, 罗学刚, 李纪伟, 等. 胶原蛋白/低密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2014, 31(4):944-948.

    NIU N, LUO X G, LI J W, et al. Preparation and performance of hydrolyzed collagen/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2014,31(4):944-948(in Chinese).
    [16] 盛旭敏, 李又兵, 王选伦, 等. 食用级淀粉/低密度聚乙烯复合材料研究[J]. 重庆理工大学学报, 2011, 25(2): 37-42.

    SHENG X M, LI Y B, WANG X L, et al. Study on composite material of LDPE and edible starch[J]. Journal of Chongqing University of Technology, 2011, 25(2): 37-42(in Chinese).
    [17] 陈李红. 天然蛋白质可降解热塑膜及纺织浆料的制备与性能研究[D]. 上海: 东华大学, 2013.

    CHEN L H. Research on preparation and performance of biodegradable thermoplastic films and textile sizes from natural proteins[D]. Shanghai: Donghua University, 2013 (in Chinese).
    [18] CHALERMTHAI B, CHAN W Y, BASTIDAS-OYANEDEL J R, et al. Preparation and characterization of whey protein-based polymers produced from residual dairy streams[J]. Polymers,2019,11(4):722-732. doi: 10.3390/polym11040722
    [19] 彭旭锵. PP/超细羽绒粉体共混改性及可纺性研究[D]. 武汉: 武汉科技学院, 2007.

    PENG X Q. Study on blending modification and spinnability of PP/superfine down powder[D]. Wuhan: Wuhan University of Science and Engineering, 2007(in Chinese).
    [20] 朱凌波, 李新功, 杨凯, 等. 几种不同改性剂对稻草/丙烯腈-丁二烯-苯乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1791-1799.

    ZHU L B, LI X G, YANG K, et al. Performance enhancement of straw / acrylonitrile-butadiene-styrene composites modified by several different kinds of modifiers[J]. Acta Materiae Compositae Sinica,2018,35(7):1791-1799(in Chinese).
    [21] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the Peoples Republic of China. Plastic the measurement of tensile properties: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese).
    [22] 中国国家标准化管理委员会. 塑料弯曲性能试验方法: GB/T 9341—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the Peoples Republic of China. Plastic determination of flexural properties: GB/T 9341—2000[S]. Beijing: Standards Press of China, 2000 (in Chinese).
    [23] VUONG Q V, GOLDING J B, NGUYEN M H, et al. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves[J]. Journal of Food Engineering,2012,110:1-8.
    [24] ZHANG Q A, YUE X F, FAN X H, et al. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder[J]. Food Chemistry,2009,116:513-518.
    [25] 熊勇, 李冬梅, 刘江波, 等. 响应面法分析优化藻蓝蛋白色素提取工艺的研究[J]. 中国食品添加剂, 2018(11):107-112.

    XIONG Y, LI D M, LIU J B, et al. Optimization of the extraction technology of phycocyanin from Spirulina using response surface methodology[J]. China Food Additives,2018(11):107-112(in Chinese).
    [26] NAKA K, NAKANMURA T, OHKI A, et al. Chitin-graft-poly(2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent[J]. International Journal of Biological Macromolecules,1998,23(4):14-17.
    [27] PAWLAK A, MUCHA A. Thermogravimetric and FTIR studies of chitosan blends[J]. Thermochimica Acta,2003,296(1-2):14-17.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  897
  • HTML全文浏览量:  251
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 录用日期:  2019-12-03
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回