留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能

戴海军 李嘉禄 孙颖 刘梁森 陈利

戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004 doi:  10.13801/j.cnki.fhclxb.20191129.001
引用本文: 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004 doi:  10.13801/j.cnki.fhclxb.20191129.001
Haijun DAI, Jialu LI, Ying SUN, Liangsen LIU, Li CHEN. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1997-2004. doi: 10.13801/j.cnki.fhclxb.20191129.001
Citation: Haijun DAI, Jialu LI, Ying SUN, Liangsen LIU, Li CHEN. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1997-2004. doi: 10.13801/j.cnki.fhclxb.20191129.001

纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能

doi: 10.13801/j.cnki.fhclxb.20191129.001
基金项目: 天津市自然科学基金(19JCYBJC18300)
详细信息
    通讯作者:

    孙颖,博士,教授,博士生导师,研究方向为高性能编织材料和树脂基纺织复合材料 E-mail:sunying@tjpu.edu.cn

  • 中图分类号: TB332

Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites

  • 摘要: 为开发一种可用于航空飞行器防/除冰防护的电加热复合材料,本文设计制备了三种纬编双轴向织物/环氧树脂复合材料,采用实验方法研究了纬编双轴向织物电阻丝排列密度对复合材料电热性能和层间剪切性能的影响。电加热复合材料上、下层均为玻璃纤维/环氧树脂预浸料,中间层为电加热纬编双轴向织物,织物衬经纱、捆绑纱和衬纬纱分别采用铜镍合金丝、涤纶和玻璃纤维。采用红外温度测试仪和材料万能试验机进行性能测试。结果表明:施加电压6 s后复合材料表面温度快速升高,在60 s左右温度达到最高平衡温度,复合材料表面最高平衡温度与施加电压成正比关系;当施加电压不变时,电阻丝排列密度越小,复合材料表面最高平衡温度越高;电阻丝排列密度越小,复合材料层间剪切强度越大。可见,纬编双轴向织物/环氧树脂电加热复合材料具有轻质高强、加热速率高、成型性好等特点,适合用于飞行器多个部位的防/除冰。
  • 图  1  电加热纬编双轴向织物结构示意图

    Figure  1.  Structure diagram of electrically heated weft knitted biaxial fabric

    图  2  电加热纬编双轴向织物实物图

    Figure  2.  Physical picture of electrically heated weft knitted biaxial fabric

    图  3  纬编双轴向织物/环氧树脂电加热复合材料制备原理图

    Figure  3.  Schematic diagram of preparation process of weft knitted biaxial fabric/epoxy resin electrically heated composites

    图  4  不同电阻丝排列密度的纬编双轴向织物/环氧树脂电加热复合材料

    Figure  4.  Weft knitted biaxial fabric/epoxy resin electrically heated composites with different resistance wire densities

    图  5  纬编双轴向织物/环氧树脂电加热复合材料试样

    Figure  5.  Samples of weft knitted biaxial fabric/epoxy resin electrically heated composites

    图  6  TP8红外摄像机

    Figure  6.  TP8 infrared camera

    图  7  岛津试验机(a)和3D轮廓测量仪(b)

    Figure  7.  Shimadzu testing machine(a) and 3D profilometer(b)

    图  8  不同输出电压下纬编双轴向织物/环氧树脂电加热复合材料温度-时间曲线

    Figure  8.  Temperature-time curves of weft knitted biaxial fabric/epoxy resin electrically heated composites under different voltages

    图  9  不同输出电压时纬编双轴向织物/环氧树脂电加热复合材料表面最高平衡温度

    Figure  9.  Maximum equilibrium temperatures of weft knitted biaxial fabric/epoxy resin electrically heated composite surface under different output voltages

    图  10  纬编双轴向织物/环氧树脂电加热复合材料表面最高温度图像和三维温度图像

    Figure  10.  Maximum temperature images and three-dimensional temperature images of weft knitted biaxial fabric/epoxy resin electrically heated composite surface

    图  11  纬编双轴向织物/环氧树脂电加热复合材料层间剪切实验载荷-位移曲线

    Figure  11.  Interlaminar shear load-displacement curves of weft knitted biaxial fabric/epoxy resin electrically heated composites

    图  12  纬编双轴向织物/环氧树脂电加热复合材料剪切试样形貌

    Figure  12.  Shear morphologies of weft knitted biaxial fabric/epoxy resin electrically heated composite samples

    表  1  玻璃纤维性能参数

    Table  1.   Properties of glass fiber

    MaterialDensity/
    (g·cm−3)
    Permittivity/
    MHz
    Dielectric loss/
    10−3 MHz
    Tensile strength/
    MPa
    Tensile modulus/
    GPa
    Maximum service
    temperature/℃
    E-glass fiber 2.54 6.6 1.2 3 430 72 380
    下载: 导出CSV

    表  2  铜镍22合金丝性能参数

    Table  2.   Properties of Cu-Ni 22 alloy

    MaterialDiameter/
    mm
    Resistivity/
    (μΩ·m)
    Density/
    (g·cm−3)
    Temperature coefficient
    of resistance/10−6
    Maximum service
    temperature/℃
    Cu-Ni 22 0.22±0.01 0.169 8.9 <25 300
    下载: 导出CSV

    表  3  玻璃纤维/环氧树脂复合材料预浸料性能参数

    Table  3.   Performance parameters of glass fiber/epoxy resin composite prepreg

    Resin specificationFabric specificationLaminate mechanical properties
    9A16 epoxy resinE-glass fiber
    Cure
    temperature/℃
    Fabric areal
    weight/(g·m−2)
    0° tensile
    strength/MPa
    0° tensile
    modulus/GPa
    0° compressive
    strength/MPa
    0° flexual
    strength/MPa
    110−150 96±9 400 18 450 500
    下载: 导出CSV

    表  4  电加热纬编双轴向织物结构参数

    Table  4.   Structural parameters of electrically heated weft knitted biaxial fabric

    Thickness/
    mm
    Court warp/
    (yarns·(10 mm)−1)
    Court fill/
    (yarns·(10 mm)−1)
    Fabric areal
    weight/(g·m−2)
    1.16±0.1 7±1 5±1 700±2
    下载: 导出CSV

    表  5  纬编双轴向织物/环氧树脂电加热复合材料试样电阻值

    Table  5.   Resistance values of weft knitted biaxial fabric/epoxy resin electrically heated composite samples

    TypeResistence/Ω
    1234AverageVariance/10−6
    EC4 0.289 0.284 0.290 0.289 0.288 5.50
    EC5 0.270 0.272 0.274 0.270 0.272 2.75
    EC9 0.245 0.241 0.245 0.238 0.242 8.75
    下载: 导出CSV

    表  6  纬编双轴向织物/环氧树脂电加热复合材料层间剪切强度

    Table  6.   Interlaminar shear strengths of weft knitted biaxial fabric/epoxy resin electrically heated composites

    SampleWidth/mmThickness/mmMaximum load/NShort-beam strength/MPaAverage/MPaVariance/10−3
    EC4-01 10.0 1.01 21.395 1.589 1.609 5.96
    EC4-02 10.1 1.00 19.835 1.473
    EC4-03 10.0 1.01 21.980 1.632
    EC4-04 10.0 1.01 22.940 1.703
    EC4-05 10.2 1.00 22.415 1.648
    Sample Width/mm Thickness/mm Maximum load/N Short-beam strength/MPa Average/MPa Variance/10−3
    EC5-01 10.0 1.01 15.005 1.114 1.078 2.96
    EC5-02 10.2 1.00 14.925 1.097
    EC5-03 10.1 1.03 13.630 0.983
    EC5-04 10.0 1.02 15.495 1.139
    EC5-05 10.0 1.00 14.100 1.058
    Sample Width/mm Thickness/mm Maximum load/N Short-beam strength/MPa Average/MPa Variance/10−3
    EC9-01 10.1 1.00 10.440 0.775 0.734 2.29
    EC9-02 10.3 1.02 9.955 0.711
    EC9-03 10.0 1.00 9.170 0.688
    EC9-04 10.0 1.00 10.745 0.806
    EC9-05 10.2 1.00 9.385 0.690
    下载: 导出CSV
  • [1] ALEMOUR B, BADRAN O, HASSAN M R. A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation[J]. Journal of Aerospace Technology and Management,2019,11(1):1919.
    [2] 林森什, 胡路平, 叶宇琛. 直升机发动机进气系统结冰试验及试验结果分析[J]. 直升机技术, 2019(2):55-59. doi:  10.3969/j.issn.1673-1220.2019.02.012

    LIN S S, HU L P, YE Y C. The icing test and analysis of the helicopter’s engine air intake system[J]. Helicopter Technique,2019(2):55-59(in Chinese). doi:  10.3969/j.issn.1673-1220.2019.02.012
    [3] VERTUCCIO L, SANTIS F D, PANTANI R, et al. Effective de-icing skin using graphene-based flexible heater[J]. Composites Part B: Engineering,2019,162:600-610. doi:  10.1016/j.compositesb.2019.01.045
    [4] 杨常卫, 胡和平, 马艳玲, 等. 直升机旋翼桨叶防/除冰技术新思路[J]. 直升机技术, 2009(3):47-51. doi:  10.3969/j.issn.1673-1220.2009.03.009

    YANG C W, HU H P, MA Y L, et al. An new idea on anti-icing and de-icing of helicopter rotor blade[J]. Helicopter Technique,2009(3):47-51(in Chinese). doi:  10.3969/j.issn.1673-1220.2009.03.009
    [5] SYED H, ANURA F, MUHAMMAD D H, et al. Study of electro-thermal properties of pyrrole polymerised knitted fabrics[J]. Journa of Industrial Textiles,2016,46(3):771-786. doi:  10.1177/1528083715598653
    [6] LEE J Y, PARK D W, LIM J O. Polypyrrole-coated woven fabric as a flexible surface-heating element[J]. Macromolecular Research,2003,11(6):481-487. doi:  10.1007/BF03218980
    [7] HAKANSSON E, KAYNAK A, LIN T, et al. Characterization of conducting polymer coated synthetic fabrics for heat generation[J]. Synthetic Metals,2004(144):21-28.
    [8] ILANCHEZHIYAN P, ZAKIROV A S, KUMAR G M, et al. Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications[J]. RSC Advances,2015(5):10697-10702.
    [9] LIU H, LI J, CHEN L, et al. Thermal-electronic beheviors investigation of knitted heating fabrics based on silver plating compound yarns[J]. Textile Research Journal,2015,86(13):1398-1412.
    [10] TONG J H, DING F, TAO X M, et al. Temperature effect on the conductivity of knitted fabrics embedded with conducting yarns[J]. Textile Research Journal,2014,84(17):1849-1857. doi:  10.1177/0040517514530026
    [11] SYED H, PRASAD P, ANURA F. Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn[J]. Materials,2013(6):1072-1089.
    [12] LIU L, LIU H. Study of thermo-electronic characteristics of woven heating fabrics embed with silver filaments based on infrared images[J]. Journal of Fiber Bioengineering and Informatics,2016,9(1):39-51. doi:  10.3993/jfbim00203
    [13] SYED H, ANURA F, MUHAMMAD M. Thermo-mechanical behavior of stainless steel knitted structures[J]. Heat and Mass Transfer,2016,52(9):1861-1870. doi:  10.1007/s00231-015-1707-z
    [14] 陈莉, 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(4):50-54.

    CHEN L, LIU H. Electric heating performance of heatable weft knitted fabric[J]. Journal of Textile Research,2015, 36(4):50-54(in Chinese).
    [15] KIM H, LEE S. Characteristics of electrical heating elements coated with graphene nanocomposite on polyester fabric: Effect of different graphene contents and annealing temperatures[J]. Fibers and Polymers,2018,19(5):965-976. doi:  10.1007/s12221-018-7825-8
    [16] JIANG G, CHEN L, ZHANG S, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials <italic>&</italic> Interfaces,2018(10):36505-36511.
    [17] CHEN L, ZHANG Y D, WU Q. Effect of graphene coating on the heat transfer performance of a composite anti-/de-icing component[J]. Coating,2017,7(10):158. doi:  10.3390/coatings7100158
    [18] NGUYEN D, BOZEK R, CENTOLANZA L R. Development of an improved deice system for UH-60 rotor blades[C]// Presented at the American Helicopter Society 66 th Annual Forum. Phoenix, Curran Associates, Inc, 2010, 897-907.
    [19] 刘梁森, 戴海军, 孙颖, 等. 一种基于纬编针织物结构的电加热织物及其织造方法. 中国: ZL20191018 7551.6[P]. 2019-05-29.

    LIU L S, DAI H J, SUN Y, et al. The invention relates to an electrically heated fabric and a weaving method based on weft knitted fabric structure. China: ZL201910187551.6[P]. 2019-05-29(in Chinese).
    [20] 胡和平, 邓景辉. 直升机旋翼桨叶复合材料选材现状与分析[J]. 直升机技术, 2002(1):1-5. doi:  10.3969/j.issn.1673-1220.2002.01.001

    HU H P, DENG J H. Status and analysis of selected compo-site material for helicopter rotor blade[J]. Helicopter Technique,2002(1):1-5(in Chinese). doi:  10.3969/j.issn.1673-1220.2002.01.001
    [21] 中国建筑材料联合会. 纤维增强塑料短梁法测定层间剪切强度: JC/T 773-2010[S]. 北京: 中国标准出版社, 2011.

    Building Materials Association of China. Fiber-reinforced plastics composites-Determination of apparent interlaminar shear by short-beam method: JC/T773-2010[S]. Beijing: China Standards Press, 2011(in Chinese).
  • [1] 石经纬, 赵娟, 刘传军, 李东升.  复合材料翼面壁板剪切稳定性, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191011.001
    [2] 李哲, 黄尧, 吴刚强, 杜宇, 范晓静, 吴大鸣.  基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190924.002
    [3] 叶鑫, 安鲁陵, 岳烜德, 高国强.  填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191207.002
    [4] 史俊伟, 刘松平, 荀国立, 杨刚.  孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191008.001
    [5] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [6] 包永洁, 黄成建, 陈玉和, 戴月萍.  碳纤维纸木质电热复合材料面层电热效果的纵向尺寸效应, 复合材料学报.
    [7] 欧阳泽宇, 王珂珂, 饶琼, 张志龙, 扶碧波, 彭雄奇.  石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能, 复合材料学报.
    [8] 罗健, 石建军, 贾彬, 莫军, 黄辉.  低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响, 复合材料学报.
    [9] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [10] 吴少惠, 马荣锋, 吴平伟, 戴金辉.  空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200106.001
    [11] 孙颖颖, 周璐瑶, 韩宇, 崔柳.  气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200111.004
    [12] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [13] 谢波涛, 高亮, 江帅, 李梦军.  含孔玻璃纤维/环氧树脂复合材料-铝合金层板的拉伸损伤行为与热暴露响应, 复合材料学报.
    [14] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报.
    [15] 段瑛涛, 武肖鹏, 王智文, 敬敏, 栗娜, 刘强, 宁慧铭, 胡宁.  碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200215.002
    [16] 张霓, 郑晨阳, 羡丽娜, 王连广.  玻璃纤维增强树脂复合材料管-钢筋/混凝土空心构件抗弯性能, 复合材料学报.
    [17] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [18] 陈萍, 赵月青, 陈菲, 张博明.  单向碳纤维/环氧树脂预浸料叠层的面内变形行为, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190730.006
    [19] 汤龙其, 令旭霞, 王士华, 郭帅, 龙柱.  聚吡咯/碳纤维纸电热复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.002
    [20] 齐业雄, 姜亚明, 李嘉禄.  芳纶捆绑对纬编双轴向多层衬纱织物增强环氧树脂复合材料层间性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190725.001
  • 加载中
图(12) / 表ll (6)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  34
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 录用日期:  2019-11-17
  • 网络出版日期:  2019-11-29
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回