留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响

于翔 董献辉 桂久青 张雪寅 宋子豪 李玥

于翔, 董献辉, 桂久青, 等. Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响[J]. 复合材料学报, 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001
引用本文: 于翔, 董献辉, 桂久青, 等. Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响[J]. 复合材料学报, 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001
YU Xiang, DONG Xianhui, GUI Jiuqing, et al. Effect of Ag on properties of TiO2@Ag/polyvinylidene fluoride composite membranes[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001
Citation: YU Xiang, DONG Xianhui, GUI Jiuqing, et al. Effect of Ag on properties of TiO2@Ag/polyvinylidene fluoride composite membranes[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1555-1561. doi: 10.13801/j.cnki.fhclxb.20191128.001

Ag对TiO2@Ag/聚偏氟乙烯复合薄膜性能的影响

doi: 10.13801/j.cnki.fhclxb.20191128.001
基金项目: 国家自然科学基金青年基金(51608175);河南省科技厅科技攻关项目(182102310866)
详细信息
    通讯作者:

    于翔,博士,副教授,硕士生导师,研究方向为光催化、高分子纳米材料 E-mail:yxpolymer@sina.com

  • 中图分类号: TB333;O643

Effect of Ag on properties of TiO2@Ag/polyvinylidene fluoride composite membranes

  • 摘要: 采用光化学沉积法和溶液刮膜法制备不同Ag含量的TiO2@Ag/聚偏氟乙烯(PVDF)复合薄膜,并采用电子万能材料试验机、紫外可见近红外分光光度计和XRD等对TiO2@Ag/PVDF复合薄膜的物理性能和光催化性能进行表征和分析。研究发现:与TiO2/PVDF复合薄膜相比,TiO2@Ag/PVDF复合薄膜的拉伸强度明显提高,但断裂伸长降低,且复合薄膜的响应光谱范围拓宽至可见光区;TiO2@Ag/PVDF复合薄膜的光催化降解能力随Ag负载量的增加而呈先升高后降低的趋势;同时TiO2@Ag/PVDF复合薄膜具有优异的重复利用性和可见光区自清洁作用。综上所述,实验所制备的TiO2@Ag/PVDF复合薄膜能够满足实际应用需要,因此其在光催化降解领域具有潜在的应用前景。

     

  • 图  1  TiO2/PVDF和TiO2@Ag/PVDF复合薄膜的应力-应变曲线

    Figure  1.  Stress-strain curves of TiO2/PVDF and TiO2@Ag/PVDF composite membranes

    图  2  TiO2@Ag/PVDF-0.3复合薄膜在不同取向方向的的应力-应变曲线

    Figure  2.  Stress-strain curves of TiO2@Ag/PVDF-0.3 composite membranes in different directions

    图  3  TiO2/PVDF和TiO2@Ag/PVDF复合薄膜的XRD图谱

    Figure  3.  XRD pattarns of TiO2/PVDF and TiO2@Ag/PVDF composite membranes

    图  4  TiO2/PVDF和TiO2@Ag/PVDF复合薄膜的紫外-可见吸收光图谱

    Figure  4.  UV-visible absorption spectra of TiO2/PVDF and TiO2@Ag/PVDF composite membranes

    图  5  TiO2/PVDF和TiO2@Ag/PVDF复合薄膜的光催化降解曲线

    Figure  5.  Photocatalytic degradation curves of TiO2/PVDF and TiO2@Ag/PVDF composite membranes

    图  6  TiO2@Ag/PVDF-0.03/3复合薄膜的循环使用光催化降解曲线

    Figure  6.  Cyclic photocatalytic degradation curves of TiO2@Ag/ PVDF-0.03/3 composite membranes

    图  7  TiO2@Ag/PVDF-0.03/3复合薄膜在自然光下的自清洁过程

    Figure  7.  Self-cleaning process of TiO2@Ag/PVDF-0.03/3 composite membranes under natural ligh

    表  1  前负载Ag的TiO2@Ag/聚偏氟乙烯(PVDF)复合薄膜的具体组成

    Table  1.   Specific compositions of TiO2@Ag/polyvinylidene fluoride(PVDF) composite membranes with front-loaded Ag

    SamplePVDF/gPVP/gTiO2@Ag/gDMAc/mL
    TiO2@Ag/PVDF-0.3 5.0 2.5 0.5 30
    TiO2@Ag/PVDF-0.03 5.0 2.5 0.5 30
    下载: 导出CSV

    表  2  后负载Ag的TiO2@Ag/PVDF复合薄膜的制备参数

    Table  2.   Preparation parameters of TiO2@Ag/PVDF composite membranes with after-loaded Ag

    SampleAgNO3/(mmol·L−1)Light time/min
    TiO2@Ag/PVDF-0.3/1 0.3 1
    TiO2@Ag/PVDF-0.3/2 0.3 2
    TiO2@Ag/PVDF-0.3/3 0.3 3
    TiO2@Ag/PVDF-0.03/1 0.03 1
    TiO2@Ag/PVDF-0.03/2 0.03 2
    TiO2@Ag/PVDF-0.03/3 0.03 3
    下载: 导出CSV
  • [1] 何蕾, 鲍建国, 冷一非, 等. 新型光催化材料制备及其PVDF膜自清洁改性[J]. 环境科学与技术, 2018, 41(10):26-33.

    HE Lei, BAO Jianguo, LENG Yifei, et al. A novel (H) g-C3N4/Ag3PO4/TiO2 photocatalysis composite modified PVDF membrane and its evaluation on self-cleaning properties[J]. Environmental Science & Technology,2018,41(10):26-33(in Chinese).
    [2] WANG F, WANG Y, FENG Y, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental,2018,211:510-520.
    [3] 李子成, 杨涛, 陆丽晨, 等. 光降解催化剂及其应用研究进展[J]. 化工新型材料, 2018, 46(10):57-62.

    LI Zicheng, YANG Tao, LU Lichen, et al. Current research status of photo-degradation catalyst and its application[J]. New Chemical Materials,2018,46(10):57-62(in Chinese).
    [4] 钟翔燕. 聚偏氟乙烯/二氧化钛原位杂化超滤膜的制备及效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHONG Xiangyan. Study on fabrication and performance evaluation of in-situ TiO2 hybridized PVDF ultrafiltration membrane[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [5] 范鸿梅. 黑色TiO2的改性及其光催化性能研究[D]. 乌鲁木齐: 新疆大学, 2018.

    FAN Hongmei. The investigation on the modification of black TiO2 and its photocatalytic performance[D]. Urumqi: Xinjiang University, 2018(in Chinese).
    [6] LU Y, CHEN X, TIAN G, et al. Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability[J]. Nano Energy,2018,47:8-17. doi: 10.1016/j.nanoen.2018.02.021
    [7] NGUYEN C C, NGUYEN D T, DO T O. A novel route to synthesize C/Pt/TiO2 phase tunable anatase-Rutile TiO2 for efficient sunlight-driven photocatalytic applications[J]. Applied Catalysis B: Environmental,2018,226:46-52. doi: 10.1016/j.apcatb.2017.12.038
    [8] WANG Q, YANG C, ZHANG G, et al. Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation[J]. Chemical Engineering Journal,2017,39:39-47.
    [9] 潘家豪, 吴礼光, 王挺, 等. TiO2表面沉积Ag粒子及其可见光下降解含盐废水中的苯酚[J]. 环境科学学报, 2018, 38(12):4670-4679.

    PAN Jiahao, WU Liguang, WANG Ting, et al. Deposition of Ag particles on TiO2 surface and its photodegradation for phenol in salty wastewater under visible light excitation[J]. Acta Scientiae Circumstantiae,2018,38(12):4670-4679(in Chinese).
    [10] WEN C, JIANG H, QIAO S, et al. Synthesis of high-reactive facets dominated anatase TiO2[J]. Journal of Materials Chemistry,2011,21(20):7052-7061. doi: 10.1039/c1jm00068c
    [11] 朱腾义, 严和婷, 李毛. 聚偏氟乙烯膜改性方法研究进展[J]. 化学通报, 2018, 81(12):1089-1095.

    ZHU Tengyi, YAN Heting, LI Mao. Progress in polyvinylidene fluoride membrane modification method[J]. Chemistry,2018,81(12):1089-1095(in Chinese).
    [12] 姜海凤. PVDF及其杂化膜的制备与表征[D]. 青岛: 中国海洋大学, 2009.

    JIANG Haifeng. Preparation and characterization of PVDF and its hybrid membrane[D]. Qingdao: Ocean University of China, 2009(in Chinese).
    [13] 曹晓春. 聚偏氟乙烯与纳米二氧化钛复合超滤膜的研制[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    CAO Xiaochun. Preparation of composite ultrafiltration membrane by PVDF and TiO2 nanoparticles[D]. Harbin: Harbin Institute of Technology, 2006(in Chinese).
    [14] CHEN Q, YU Z X, PAN Y, et al. Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag-TiO2 nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2016,28(4):3865-3874.
    [15] LEE C G, JAVED H, ZHANG D, et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants[J]. Environmental Science & Technology,2018,52(7):4285-4293.
    [16] DAMODER R A, YOU S J, CHOU H H. Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes[J]. Journal of Hazardous Materials,2009,172(2-3):1321-1328. doi: 10.1016/j.jhazmat.2009.07.139
    [17] 章丹, 徐斌, 朱培娟, 等. TiO2光催化降解次甲基蓝机理的研究[J]. 华东师范大学学报(自然科学版), 2013(5):35-42.

    ZHANG Dan, XU Bin, ZHU Peijuan, et al. Study on the mechanism of blue degradation by TiO2 photocatalyst[J]. Journal of East China Normal University (Natural Science),2013(5):35-42(in Chinese).
    [18] GREGORIO R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions[J]. Journal of Applied Polymer Science,2006,100(4):3272-3279. doi: 10.1002/app.23137
    [19] 朱晓东, 王尘茜, 裴玲秀, 等. Ag修饰TiO2的制备及其在模拟太阳光下的光催化性能研究[J]. 人工晶体学报, 2018, 47(6):1136-1141, 1147. doi: 10.3969/j.issn.1000-985X.2018.06.008

    ZHU Xiaodong, WANG Chenxi, PEI Lingxiu, et al. Preparation and photocatalytic activity of Ag-modified TiO2 under simulated solar light[J]. Journal of Synthetic Crystals,2018,47(6):1136-1141, 1147(in Chinese). doi: 10.3969/j.issn.1000-985X.2018.06.008
    [20] 张绍岩, 次立杰, 丁士文, 等. 载Ag二氧化钛纳米线的制备及其光催化性能[J]. 人工晶体学报, 2010, 39(3):761-765.

    ZHANG Shaoyan, CI Lijie, DING Shiwen, et al. Preparation and photocatalytic properties of Titania nanowires loaded with Ag nanoparticles[J]. Journal of Synthetic Crystals,2010,39(3):761-765(in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  851
  • HTML全文浏览量:  191
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-11-16
  • 网络出版日期:  2019-11-28
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回