留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂复合材料细观蠕变性能

李云芳 潘俊臣 郎风超 杨诗婷 姜爱峰 李继军

李云芳, 潘俊臣, 郎风超, 等. 碳纤维增强树脂复合材料细观蠕变性能[J]. 复合材料学报, 2020, 37(8): 1861-1867. doi: 10.13801/j.cnki.fhclxb.20191118.001
引用本文: 李云芳, 潘俊臣, 郎风超, 等. 碳纤维增强树脂复合材料细观蠕变性能[J]. 复合材料学报, 2020, 37(8): 1861-1867. doi: 10.13801/j.cnki.fhclxb.20191118.001
LI Yunfang, PAN Junchen, LANG Fengchao, et al. Microcreep properties of carbon fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1861-1867. doi: 10.13801/j.cnki.fhclxb.20191118.001
Citation: LI Yunfang, PAN Junchen, LANG Fengchao, et al. Microcreep properties of carbon fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1861-1867. doi: 10.13801/j.cnki.fhclxb.20191118.001

碳纤维增强树脂复合材料细观蠕变性能

doi: 10.13801/j.cnki.fhclxb.20191118.001
基金项目: 国家自然科学基金(11762013;11562016);内蒙古自然科学基金(2018MS01013);内蒙古工业大学科学研究项目(ZZ201812;ZY201818)
详细信息
    通讯作者:

    姜爱峰,硕士,讲师,研究方向为复合材料细观力学 E-mail:jaf@163.com

  • 中图分类号: TB332

Microcreep properties of carbon fiber reinforced resin composites

  • 摘要: 碳纤维增强树脂复合材料以其优异的性能,在各领域得到广泛应用。由于树脂基体具有黏弹性,使其合成的复合材料也表现出黏弹性行为。蠕变是材料黏弹性行为中最典型的一类现象,因此对碳纤维增强树脂复合材料细观蠕变性能的研究具有重要意义。室温下利用纳米压痕技术对碳纤维增强树脂复合材料中的基体、界面及纤维相在不同峰值载荷下的细观蠕变行为进行分析。结果表明:在相同的蠕变时间下,最大载荷为2 mN和10 mN的纤维蠕变位移约为基体蠕变位移的1/3和1/2,界面的蠕变位移介于两者之间;稳态蠕变阶段的蠕变速率小于0.1%;基体、界面、纤维的蠕变应力指数分别为3.6、2.9和2.1。同时根据Kelvin-Voigt模型得到了基体、界面及纤维的第一、第二复数模量、黏度系数及蠕变柔量。

     

  • 图  1  Berkovich压头及压头测试点在碳纤维增强树脂复合材料位置形貌

    Figure  1.  Berkovich indenter and indenter test point position in carbon fiber reinforced resin composite

    图  2  最大载荷分别为2 mN、10 mN时碳纤维增强树脂复合材料的载荷-位移曲线

    Figure  2.  Load-displacement curves of carbon fiber reinforced resin composites with maximum load of 2 mN and 10 mN respectively

    图  3  碳纤维增强树脂复合材料最大载荷-蠕变位移曲线

    Figure  3.  Creep displacement curves under maximum load of carbon fiber reinforced resin composite

    图  4  不同峰值载荷下碳纤维增强树脂复合材料保载时间-蠕变位移曲线

    Figure  4.  Load holding time-creep displacement curves of carbon fiber reinforced resin composites under different peak loads

    图  5  不同峰值载荷下碳纤维增强树脂复合材料的保载时间-蠕变速率曲线

    Figure  5.  Load holding time-creep rate curves of carbon fiber reinforced resin composites under different peak loads

    图  6  碳纤维增强树脂复合材料保载时间-蠕变位移拟合曲线

    Figure  6.  Load holding time-creep displacement fitting curves of carbon fiber reinforced resin composites

    图  7  碳纤维增强树脂复合材料蠕变应力指数变化曲线

    Figure  7.  Creep stress index variation curve of carbon fiber reinforced resin composites

    图  8  Kelvin模型

    Figure  8.  Kelvin model

    图  9  碳纤维增强树脂复合材料的时间-蠕变柔量曲线

    Figure  9.  Time-creep compliance curves of carbon fiber reinforced resin composites

    表  1  最大载荷为2 mN的碳纤维增强树脂复合材料的Kelvin-Voigt模型拟合参数

    Table  1.   Kelvin-Voigt model fitting parameters of carbon fiber reinforced resin composite with maximum load of 2 mN

    FiberInterfaceMatrix
    E1/GPa 122.38 40-80 33.39
    Ek/GPa 15.47 4-9 3.37
    η/(GPa·s) 1 144.25 340-900 319.08
    R2 0.96296 0.95341 0.95462
    Notes: E1—Complex modulus of the first spring element; Ek—Complex modulus of the second spring; η—Viscosity of the dashpot; R2—Reliability value.
    下载: 导出CSV

    表  2  最大载荷为10 mN的碳纤维增强树脂复合材料的Kelvin-Voigt模型拟合参数

    Table  2.   Kelvin-Voigt model fitting parameters of carbon fiber reinforced resin composite with maximum load of 10 mN

    FiberInterfaceMatrix
    E1/GPa 154.54 35-100 22.34
    Ek/GPa 12.70 5-8.5 3.43
    η/(GPa·s) 1 042.00 300-1 000 362.50
    R2 0.95781 0.96357 0.95493
    下载: 导出CSV
  • [1] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316.

    CHEN Y, GE E D, FU Y C, et al. Research status and prospect of hole making technology of carbon fiber reinforced resin matrix composites[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese).
    [2] 穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990: 67.

    MU X Y. Creep mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1990: 67.
    [3] NABARRO F R N, DE VILLIERS H L. The physics of creep[M]. London: Taylor and Francis, 1995: 113.
    [4] LI W B, HENSHALL J L, HOOPER R M, et al. The mechanisms of indentation creep[J]. Acta Metallurgica et Materialia,1991,39:3099-3110. doi: 10.1016/0956-7151(91)90043-Z
    [5] 孟龙晖, 杨吟飞, 何宁. 纳米压痕法测量Ti6Al4V钛合金室温蠕变应力指数[J]. 稀有金属材料与工程, 2016, 45(3):617-622.

    MENG L H, YANG Y F, HE N. Creep stress index of Ti6Al4V titanium alloy at room temperature was measured by nano-indentation[J]. Rare Metal Materials and Engineering,2016,45(3):617-622(in Chinese).
    [6] RANAIVOMANANA N, STÉPHANE M, TURATSINZE A. Basic creep of concrete under compression, tension and bending[J]. Construction and Building Materials,2013,38(9):173-180.
    [7] MAHMUDI R, ROUMINA R, RAEISINIA B. Investigation of stress exponent in the power-law creep of Pb-Sb alloys[J]. Materials Science <italic>&</italic> Engineering A (Structural Materials: Properties, Microstructure and Processing),2004,382(1-2):15-22.
    [8] GAO Y, WEN S P, WANG X H, et al. Investigation on indentation creep by depth sensing indentation[J]. Journal of Aeronautical Materials,2006,26(3):148.
    [9] MA X, YOSHIDA F. Rate-dependent indentation hardness of a power-law creep solder alloy[J]. Applied Physics Letters,2003,82(2):188-190. doi: 10.1063/1.1537513
    [10] 易楠, 顾轶卓, 李敏, 等. 碳纤维复合材料界面结构的形貌与尺寸的表征[J]. 复合材料学报, 2010, 27(5):36-40.

    YI N, GU Y Z, LI M, et al. Morphology and size characterization of interface structure of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2010,27(5):36-40(in Chinese).
    [11] 高雪玉, 杨庆生, 刘志远, 等. 基于纳米压痕技术的碳纤维/环氧树脂复合材料各组分原位力学性能测试[J]. 复合材料学报, 2012(5):209-214.

    GAO X Y, YANG Q S, LIU Z Y, et al. In-situ mechanical properties test of carbon fiber/epoxy composites based on nanoindentation technology[J]. Acta Materiae Compositae Sinica,2012(5):209-214(in Chinese).
    [12] 徐宏扬, 柯海波, 黄火根, 等. U<sub>65</sub>Fe<sub>30</sub>Al<sub>5</sub>非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7):817-823.

    XU H Y, KE H B, HANG H G, et al. Creep behavior of U<sub>65</sub>Fe<sub>30</sub>Al<sub>5</sub> amorphous alloy in nanometer indentation[J]. Acta Metallurgica Sinica,2017,53(7):817-823(in Chinese).
    [13] MUZTAHID M, MOHAMMAD M, BRIAN T, et al. Depth-sensing time-dependent response of additively manufactured Ti-6Al-4V alloy[J]. Additive Manufacturing,2018(24):37-46.
    [14] ZHANG J. Characterization and analysis of delamination fracture and nanocreep, properties in carbon epoxy composites manufactured by different processes[J]. Journal of Composite Materials,2005,40(14):1287-1299.
    [15] FU K K, SHEPPARD L R, CHANG L, et al. Length-scale-dependent nanoindentation creep behaviour of Ti/Al multilayers by magnetron sputtering[J]. Materials Characterization,2018,139:165-175. doi: 10.1016/j.matchar.2018.02.041
    [16] RAMAN V, BERRICHE R. An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique[J]. Journal of Materials Research,1992,7(3):12.
    [17] LI H, NGAN A H W. Size effects of nanoindentation creep[J]. Journal of Materials Research,2004,19(2):513-522. doi: 10.1557/jmr.2004.19.2.513
    [18] SHEN B L, ITOI T, YAMASAKI T, et al. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying[J]. Scripta Materialia,2000,42(9):893-898. doi: 10.1016/S1359-6462(00)00309-2
    [19] FISCHER-CRIPPS A C. A simple phenomenological approach to nanoindentation creep[J]. Materials Science <italic>&</italic> Engineering A (Structural Materials: Properties, Microstructure and Processing),2004,385(1-2):74-82.
    [20] PENG G, ZHANG T, FENG Y, et al. Determination of shear creep compliance of linear viscoelastic solids by instrumented indentation when the contact area has a single maximum[J]. Journal of Materials Research,2012,27(12):1565-1572. doi: 10.1557/jmr.2012.120
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1042
  • HTML全文浏览量:  334
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-11-11
  • 网络出版日期:  2019-11-18
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回