留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅烷化多壁碳纳米管/硅橡胶复合材料的制备和介电性能

张子靖 刘畅 李如会 吴崇刚 龚兴厚 胡涛

张子靖, 刘畅, 李如会, 等. 硅烷化多壁碳纳米管/硅橡胶复合材料的制备和介电性能[J]. 复合材料学报, 2020, 37(7): 1675-1683. doi: 10.13801/j.cnki.fhclxb.20191113.004
引用本文: 张子靖, 刘畅, 李如会, 等. 硅烷化多壁碳纳米管/硅橡胶复合材料的制备和介电性能[J]. 复合材料学报, 2020, 37(7): 1675-1683. doi: 10.13801/j.cnki.fhclxb.20191113.004
ZHANG Zijing, LIU Chang, LI Ruhui, et al. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1675-1683. doi: 10.13801/j.cnki.fhclxb.20191113.004
Citation: ZHANG Zijing, LIU Chang, LI Ruhui, et al. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1675-1683. doi: 10.13801/j.cnki.fhclxb.20191113.004

硅烷化多壁碳纳米管/硅橡胶复合材料的制备和介电性能

doi: 10.13801/j.cnki.fhclxb.20191113.004
基金项目: 国家自然科学基金(51703053);湖北省自然科学基金(2016CFB205)
详细信息
    通讯作者:

    胡涛,博士,讲师,硕士生导师,研究方向为有机硅功能材料及其衍生物 E-mail:hutao@mail.hbut.edu.cn

  • 中图分类号: TB332

Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites

  • 摘要: 采用三种不同官能度的硅烷偶联剂(甲基三乙氧基硅烷(MTES)、二甲基二乙氧基硅烷(DMDES)及三甲基乙氧基硅烷(TMES))在有水条件下对多壁碳纳米管(MWCNTs)进行表面改性,通过FTIR、XPS、TG及SEM表征了MWCNTs改性前和改性后的化学结构。采用机械共混法制备了MWCNTs/硅橡胶(SR)复合材料。SEM结果表明,将不同质量分数的MWCNTs、MWCNTs-MTES、MWCNTs-DMDES和MWCNTs-TMES填充到SR中,硅烷改性可以降低MWCNTs间的相互作用,改善其在SR中的分散性。拉伸试验结果表明,改性MWCNTs与SR之间的相互作用增强,二者的相容性得到改善。当改性MWCNTs含量≤2wt%时,MWCNTs/SR复合材料的弹性模量无明显变化。介电性能测试结果表明,当MWCNTs-MTES质量分数为2wt% 时,MWCNTs-MTES/SR复合材料在104 Hz时介电常数达到5.02,较纯硅橡胶提高了57%,而介电损耗仍低于0.01,保持在极低水平。

     

  • 图  1  MTES改性多壁碳纳米管(MWCNTs)的反应机制

    Figure  1.  Reaction mechanism of MTES modified multi-walled carbon nanotubes(MWCNTs)

    图  2  MWCNTs改性前后的FTIR图谱

    Figure  2.  FTIR spectra of MWCNTs before and after modification

    图  3  MWCNTs改性前后的XPS图谱

    Figure  3.  XPS spectra of MWCNTs before and after modification

    图  4  MWCNTs和MWCNTs-MTES的C 1s图谱

    Figure  4.  C 1s spectra of MWCNTs and MWCNTs-MTES

    图  5  MWCNTs改性前后的TG曲线

    Figure  5.  TG curves of MWCNTs before and after modification

    图  6  MWCNTs和MWCNTs-MTES的SEM图像

    Figure  6.  SEM images of MWCNTs and MWCNTs-MTES

    图  7  MWCNTs不同添加量的MWCNTs/SR、MWCNTs-MTES/SR、MWCNTs-DMDES/SR及MWCNTs-TMES/SR复合材料的SEM图像

    Figure  7.  SEM images of MWCNTs/SR, MWCNTs-MTES/SR, MWCNTs-DMDES/SR, MWCNTs-TMES/SR composites with different MWCNTs mass fractions

    图  8  不同MWCNTs添加量的MWCNTs/SR、MWCNTs-MTES/SR、MWCNTs-DMDES/SR和MWCNTs-TMES/SR复合材料的介电常数

    Figure  8.  Permittivities of MWCNTs/SR, MWCNTs-MTES/SR, MWCNTs-DMDES/SR and MWCNTs-TMES/SR composites with different MWCNTs mass fractions

    表  1  甲基三乙氧基硅烷(MTES)、二甲基二乙氧基硅烷(DMDES)及三甲基乙氧基硅烷(TMES)硅烷偶联剂的官能度

    Table  1.   Functionality of methyltriethoxysilane(MTES), dimethyldiethoxysilane(DMDES) and trimethylethoxysilane(TMES) sliane coupling agents

    Sliane coupling agentFunctionality
    MTES 3
    DMDES 2
    TMES 1
    下载: 导出CSV

    表  2  MWCNTs和MWCNTs-MTES的主要元素及含量

    Table  2.   Summary of element compositions of MWCNTs and MWCNTs-MTES

    Core levelMWCNTsMWCNTs-MTES
    Peak/eVContent/at%Peak/eVContent/at%
    C 1s 254.05 96.25 284.94 53.64
    O1s 532.94 3.75 532.94 30.95
    Si 2p 102.98 15.41
    下载: 导出CSV

    表  3  MWCNTs和MWCNTs-MTES的C 1s结合方式及含量

    Table  3.   C 1s peak affiliations and contents of MWCNTs and MWCNTs-MTES

    Core levelMWCNTsMWCNTs‒MTES
    Peak/eVAtm/at%Peak/eVAtm/at%
    sp2 C=C 284.62 58.90 284.59 40.01
    sp3 C—C 285.48 16.67 285.21 53.59
    C—O 286.79 7.62 287.60 4.09
    O=C—O 288.32 3.37
    π-π* C 291.02 13.44 290.25 2.31
    下载: 导出CSV

    表  4  MWCNTs/SR、MWCNTs-MTES/SR、MWCNTs-DMDES/SR及MWCNTs-TMES/SR复合材料的拉伸性能

    Table  4.   Tensile properties of MWCNTs/SR, MWCNTs-MTES/SR, MWCNTs-DMDES/SR and MWCNTs-TMES/SR composites

    SampleMass fraction of MWCNTs/wt%Tensile strength/MPaElongation at break/%Young’s modulus/MPa
    Pure SR 0.26 408 0.12
    MWCNTs/SR 0.5 0.23 348 0.15
    1.0 0.19 288 0.12
    1.5 0.17 248 0.14
    2.0 0.19 361 0.12
    MWCNTs-MTES/SR 0.5 0.20 204 0.15
    1.0 0.25 308 0.15
    1.5 0.23 304 0.14
    2.0 0.27 354 0.14
    MWCNTs-DMDES/SR 0.5 0.23 294 0.16
    1.0 0.21 251 0.15
    1.5 0.20 228 0.16
    2.0 0.19 301 0.13
    MWCNTs-TMES/SR 0.5 0.17 208 0.14
    1.0 0.18 218 0.14
    1.5 0.17 244 0.13
    2.0 0.16 291 0.11
    下载: 导出CSV

    表  5  MWCNTs/SR、MWCNTs-MTES/SR、MWCNTs-DMDES/SR和MWCNTs-TMES/SR复合材料在104 Hz的介电常数及介电损耗

    Table  5.   Permittivities and dielectric losses of MWCNTs/SR, MWCNTs-MTES/SR, MWCNTs-DMDES/SR and MWCNTs-TMES/SR composites at 104 Hz

    SampleMass fraction of MWCNTs/wt%PermittivityDielectric loss/10−3
    Pure SR 3.19 0.87
    MWCNTs/SR 1.0 4.01 0.99
    2.0 4.60 1.75
    MWCNTs-MTES/SR 1.0 4.35 0.98
    2.0 5.02 1.02
    MWCNTs-DMDES/SR 1.0 4.07 1.21
    2.0 4.77 1.92
    MWCNTs-TMES/SR 1.0 4.18 0.83
    2.0 4.42 1.42
    下载: 导出CSV
  • [1] BROCHU P, PEI Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications,2010,31(1):10-36. doi: 10.1002/marc.200900425
    [2] PELRINE R, KORNBLUH R, PEI Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science,2000,287(5454):836-839. doi: 10.1126/science.287.5454.836
    [3] JORDI C, MICHEL S, KOVACS G, et al. Scaling of planar dielectric elastomer actuators in an agonist-antagonist configuration[J]. Sensors and Actuators A: Physical,2010,161(1-2):182-190.
    [4] LÖWE C, ZHANG X Q, KOVACS G, et al. Dielectric elastomers in actuator technology[J]. Advanced Engineering Materials,2005,7(5):361-367. doi: 10.1002/adem.200500066
    [5] MADSEN F B, DAUGAARD A E, HVILSTED S, et al. The current state of silicone-based dielectric elastomer transducers[J]. Macromolecular Rapid Communications,2016,37(5):378-413. doi: 10.1002/marc.201500576
    [6] ŞTIUBIANU G, SOROCEANU A, VARGANICI C D, et al. Dielectric elastomers based on silicones filled with transitional metal complexes[J]. Composites Part B: Engineering,2016,93:236-243. doi: 10.1016/j.compositesb.2016.03.005
    [7] RACLES C, ALEXANDRU M, BELE A, et al. Chemical modification of polysiloxanes with polar pendant groups by co-hydrosilylation[J]. RSC Advances,2014,4(71):37620-37628. doi: 10.1039/C4RA06955B
    [8] GUO J, WANG X, JIA Z, et al. Nonlinear electrical properties and field dependency of BST and nano-ZnO-doped silicone rubber composites[J]. Molecules,2018,23(12):3153. doi: 10.3390/molecules23123153
    [9] SHI Z, WANG J, MAO F, et al. Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers[J]. Journal of Materials Chemistry A,2017,5(28):14575-14582. doi: 10.1039/C7TA03403B
    [10] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [11] 王劭妤, 石坚, 郑来云. 碳纳米管/PLA 复合材料制备及性能[J]. 复合材料学报, 2012, 29(6):50-54.

    WANG S Y, SHI J, ZHENG L Y. Preparation and properties of CNTs/PLA composites[J]. Acta Materiae Compositae Sinica,2012,29(6):50-54(in Chinese).
    [12] 胡松青, 吕强, 王志坤, 等. 碳纳米管/聚合物复合材料界面结合性能的研究进展[J]. 复合材料学报, 2017, 34(1):12-22.

    HU S Q, LV Q, WANG Z K, et al. Advances in the interfacial bonding characteristics of carbon nanotube/polymer composites[J]. Acta Materiae Compositae Sinica,2017,34(1):12-22(in Chinese).
    [13] 李洪峰, 曲春艳, 王德志, 等. 酸化处理多壁碳纳米管/氰酸酯树脂复合材料性能[J]. 复合材料学报, 2018, 35(11):2973-2978.

    LI H F, QU C Y, WANG D Z, et al. Properties of acid treated multi-walled carbon nanotubes/cyanate ester resin composites[J]. Acta Materiae Compositae Sinica,2018,35(11):2973-2978(in Chinese).
    [14] AGRAWAL S, OJHA K S, SAHU D. Structural and dielectric studies of MWCNT reinforced microcellular silicone elastomer nanocomposite[J]. Materials Today: Proceedings,2015,2(9):4516-4520. doi: 10.1016/j.matpr.2015.10.065
    [15] 李海, 观姗姗, 赵树高, 等. 多壁碳纳米管协同改性及高介电纳米复合材料的制备[J]. 绝缘材料, 2017, 50(2):18-23.

    LI H, GUAN S S, ZHAO S G, et al. Synergistic modification of multi-walled carbon nanotubes and preparation of nanocomposites with high dielectric constant[J]. Insulating Materials,2017,50(2):18-23(in Chinese).
    [16] PONNAMMA D, RAMACHANDRAN R, HUSSAIN S, et al. Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites[J]. Composites Part A: Applied Science and Manufacturing,2015,77:164-171. doi: 10.1016/j.compositesa.2015.06.023
    [17] WILDER J W G, VENEMA L C, RINZLER A G, et al. Electronic structure of atomically resolved carbon nanotubes[J]. Nature,1998,391:59-62. doi: 10.1038/34139
    [18] LU W, CHOU T W. Analysis of the entanglements in carbon nanotube fibers using a self-folded nanotube model[J]. Journal of the Mechanics and Physics of Solids,2011,59(3):511-524. doi: 10.1016/j.jmps.2011.01.004
    [19] KONG J, TONG Y, SUN J, et al. Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer[J]. Composites Science and Technology,2018,159:208-215. doi: 10.1016/j.compscitech.2018.02.018
    [20] AVILÉS F, CAUICH-RODRÍGUEZ J V, TORO-ESTAY P, et al. Improving carbon nanotube/polymer interactions in nanocomposites[M]. Amsterdam: Elsevier, 2018.
    [21] JIANG M J, DANG Z M, YAO S H, et al. Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites[J]. Chemical Physics Letters,2008,457(4-6):352-356. doi: 10.1016/j.cplett.2008.04.022
    [22] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [23] VENNERBERG D, RUEGER Z, KESSLER M R. Effect of silane structure on the properties of silanized multiwalled carbon nanotube-epoxy nanocomposites[J]. Polymer,2014,55(7):1854-1865. doi: 10.1016/j.polymer.2014.02.018
    [24] 董晓娜, 杨一兵, 陈衍华, 等. 多壁碳纳米管/有机硅改性环氧树脂复合材料的研制[J]. 中国胶粘剂, 2015, 24(7):31-34.

    DONG X N, YANG Y B, CHEN Y H, et al. Study on preparing MWCNTs/organic silicon modified epoxy resin composite[J]. China Adhesives,2015,24(7):31-34(in Chinese).
    [25] FAN X, PENG W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation[J]. Advanced Materials,2008,20(23):4490-4493. doi: 10.1002/adma.200801306
    [26] YANÁMA X. Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites[J]. RSC Advances,2015,5(17):12578-12582. doi: 10.1039/C4RA13134G
    [27] 吴小利, 岳涛, 陆荣荣, 等. 碳纳米管的表面修饰及FTIR、Raman和XPS光谱表征[J]. 光谱学与光谱分析, 2005, 25(10):1595-1598. doi: 10.3321/j.issn:1000-0593.2005.10.016

    WU X L, YUE T, LU R R, et al. Hydrothermo-assisted functionalization, FTIR, Raman and XPS spectra characterization of carbon nanotubes[J]. Spectroscopy and Spectral Analysis,2005,25(10):1595-1598(in Chinese). doi: 10.3321/j.issn:1000-0593.2005.10.016
    [28] YAGHOUBI A, NIKJE M M A. Silanization of multi-walled carbon nanotubes and the study of its effects on the properties of polyurethane rigid foam nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2018,109:338-344. doi: 10.1016/j.compositesa.2018.03.028
    [29] KONG J, SUN J, TONG Y, et al. Carbon nanotubes-bridged-fumed silica as an effective binary nanofillers for reinforcement of silicone elastomers[J]. Composites Science and Technology,2019,169:232-241. doi: 10.1016/j.compscitech.2018.11.006
    [30] GALLONE G, GALANTINI F, CARPI F. Perspectives for new dielectric elastomers with improved electromechanical actuation performance: Composites versus blends[J]. Polymer International,2010,59(3):400-406. doi: 10.1002/pi.2765
    [31] YANG D, ZHANG L, LIU H, et al. Lead magnesium niobate-filled silicone dielectric elastomer with large actuated strain[J]. Journal of Applied Polymer Science,2012,125(3):2196-2201. doi: 10.1002/app.36428
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1231
  • HTML全文浏览量:  333
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-28
  • 录用日期:  2019-10-12
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回