留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用

田庆丰 唐源 刘亚兰 张春华 丁涛 李小红 张治军

田庆丰, 唐源, 刘亚兰, 等. 表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用[J]. 复合材料学报, 2020, 37(7): 1703-1712. doi: 10.13801/j.cnki.fhclxb.20191113.002
引用本文: 田庆丰, 唐源, 刘亚兰, 等. 表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用[J]. 复合材料学报, 2020, 37(7): 1703-1712. doi: 10.13801/j.cnki.fhclxb.20191113.002
TIAN Qingfeng, TANG Yuan, LIU Yalan, et al. Preparation of surface functionalized nano SiO2 and its application in solution polymerized styrene butadiene rubber-polybutadiene rubber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1703-1712. doi: 10.13801/j.cnki.fhclxb.20191113.002
Citation: TIAN Qingfeng, TANG Yuan, LIU Yalan, et al. Preparation of surface functionalized nano SiO2 and its application in solution polymerized styrene butadiene rubber-polybutadiene rubber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1703-1712. doi: 10.13801/j.cnki.fhclxb.20191113.002

表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用

doi: 10.13801/j.cnki.fhclxb.20191113.002
基金项目: 河南省科技攻关项目(192102210190);河南大学双一流学科培育项目(2018YLZDCG04; 2018YLZDYJ14);河南大学研究生教育创新与质量提升计划(SYL18060147);济源市科技发展计划科技攻关项目(19022015)
详细信息
    通讯作者:

    张治军,博士,教授,博士生导师,研究方向为纳米材料产业化 E-mail:zhangzhijun@henu.edu.cn

    李小红,博士,教授,博士生导师,研究方向为聚合物基复合材料 E-mail:10330015@vip.henu.edu.cn

  • 中图分类号: TB330.1

Preparation of surface functionalized nano SiO2 and its application in solution polymerized styrene butadiene rubber-polybutadiene rubber

  • 摘要: 采用液相原位修饰技术,制备了表面接枝有机硅烷的纳米SiO2(HB-2200)、表面接枝氨基的纳米SiO2(HB-2205N)、表面接枝不饱和双键的纳米SiO2(HB-2205D)、表面接枝氨基和双键的纳米SiO2(HB-2205ND)。利用TEM、SEM、流变仪对纳米SiO2/溶液聚合丁苯橡胶-顺丁橡胶(SSBR-BR)复合材料的结构和性能进行表征。结果表明:与未改性的纳米SiO2相比,表面功能化纳米SiO2与橡胶基体相容性改善,Payne效应降低,纳米SiO2之间的相互作用减弱,其在SSBR-BR复合材料中的分散性提高。HB-2200/SSBR-BR复合材料的混炼扭矩降低了35.7%,混炼能耗降低了15%,结合胶含量增加,填料/橡胶之间的界面结合作用增强,拉伸强度提高了60%。动态热力学和磨耗性能分析表明:纳米SiO2表面引入可反应性双键(HB-2205D),使HB-2205D/SSBR-BR复合材料的抗湿滑性能提高了40%,滚动阻力降低了43%。纳米SiO2表面接枝可反应性双键,可在不牺牲HB-2205D/SSBR-BR复合材料耐磨性能的基础上,降低其滚动阻力,提高其抗湿滑性能,为高性能轮胎的制备提供基础原材料。

     

  • 图  1  纳米SiO2的FTIR图谱

    Figure  1.  FTIR spectra of nano SiO2

    图  2  纳米SiO2的TEM图像

    Figure  2.  TEM images of nano SiO2 ((a) Z-1165MP; (b) HB-2200; (c) HB-2205D; (d) HB-2205N; (e) HB-2205ND)

    图  3  纳米SiO2的粒径分布

    Figure  3.  Particle size distribution of nano SiO2

    图  4  纳米SiO2/SSBR-BR复合材料的混炼扭矩

    Figure  4.  Mixing torque of nano SiO2/SSBR-BR composites

    图  5  纳米SiO2/SSBR-BR复合材料应力-应变曲线

    Figure  5.  Stress-strain curves of nano SiO2/SSBR-BR composites

    图  6  纳米SiO2/SSBR-BR复合材料动态热力学性能

    Figure  6.  Thermodynamic properties of nano SiO2/SSBR-BR composites

    图  7  纳米SiO2/SSBR-BR复合材料Akron磨耗

    Figure  7.  Akron abrasion of nano SiO2/SSBR-BR composites

    图  8  纳米SiO2/SSBR-BR复合材料的SEM图像

    Figure  8.  SEM images of nano SiO2/SSBR-BR composites((a)Z-1165MP/SSBR-BR; (b)HB-2200/SSBR-BR; (c)HB-2205D/SSBR-BR; (d)HB-2205N/SSBR-BR; (e)HB-2205ND/SSBR-BR)

    图  9  纳米SiO2/SSBR-BR复合材料硫化前(a)和硫化后(b)的储能模量对应变振幅的依赖性

    Figure  9.  Storage modulus dependence on oscillation strain of SiO2/SSBR-BR composites before (a) and after (b) vulcanization

    图  10  纳米SiO2/SSBR-BR复合材料硫化胶交联密度(a)和混炼胶结合胶含量(b)

    Figure  10.  Crosslink density (a) and bound rubber content (b) of nano SiO2/SSBR-BR composites

    表  1  纳米SiO2/溶液聚合丁苯橡胶-顺丁橡胶(SSBR-BR)复合材料混炼配方

    Table  1.   Mixing formula of nano SiO2/solution polymerized styrene butadiene rubber-polybutadiene rubber(SSBR-BR) composite

    MaterialAmount/g
    SSBR 96.25
    BR 30
    SiO2 70
    Si69 7
    ZnO 3
    Stearic acid 1.5
    6PPD(4020) 1.5
    Paraffin wax 1.5
    CBS 1.5
    DPG 2
    Sulfur 1.4
    Notes:6PPD(4020)—N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine;CBS—N-cyclohexylbenzothiazole-2-sulphenamide;DPG—1,3-diphenyl guanidine.
    下载: 导出CSV

    表  2  纳米SiO2表面官能团种类和含量

    Table  2.   Contents of functional groups on surface of nano SiO2

    SampleNano SiO2/wt%Methyl/wt%Double bond /wt%Amino /wt%
    Z-1165MP100000
    HB-2200802000
    HB-2205D801550
    HB-2205N801505
    HB-2205ND80152.52.5
    Notes: HB-2200—SiO2 surface grafted with methyl functional groups; HB-2205D—SiO2 surface grafted with methyl functional groups and polymers containing double bonds groups; HB-2205N—SiO2 surface grafted with methyl functional groups and polymers containing amino groups; HB-2205ND—SiO2 surface grafted with methyl functional groups and polymers containing double bonds and amino groups.
    下载: 导出CSV

    表  3  5种纳米SiO2物性参数

    Table  3.   Physical parameters of 5 types of nano SiO2

    Structure parameterZ-1165MPHB-2200HB-2205DHB-2205NHB-2205ND
    Apparent density /(g·mL−1)0.280.150.160.160.13
    Thermal mass loss at 400℃/%3.134.824.276.315.84
    Thermal mass loss at 950℃/%5.546.505.979.588.24
    Specific surface area/(m2·g−1)159124142108119
    Adsorption aperture/nm18.421.225.419.620.9
    Particle size D50/μm11.210.310.010.710.0
    下载: 导出CSV

    表  4  纳米SiO2/SSBR-BR复合材料的最大混炼扭矩和能耗

    Table  4.   Max mixing torque and energy consumption of nano SiO2/SSBR-BR composites

    SampleMax mixing
    torque/(N·m)
    Energy consumption/kJ
    Z-1165MP/SSBR-BR 78.9 336
    HB 2200/SSBR-BR 50.7 288
    HB 2205D/SSBR-BR 50.8 301
    HB 2205N/SSBR-BR 51.8 303
    HB 2205ND/SSBR-BR 51.6 301
    下载: 导出CSV
  • [1] 冯文江, 贾德民, 郭宝春. 橡胶纳米复合材料的一些新进展[J]. 高分子通报, 2014(5):22-32.

    FENG W J, JIA D M, GUO B C. Some new advances in rubber nanocomposites[J]. Polymer Bulletin,2014(5):22-32(in Chinese).
    [2] 马建华, 张立群, 吴友平. 轮胎胎面胶料性能及其机理研究进展[J]. 高分子通报, 2014(5):1-9.

    MA J H, ZHANG L Q, WU Y P. Properties of tire tread composite and their mechanism[J]. Polymer Bulletin,2014(5):1-9(in Chinese).
    [3] 唐源, 张春华, 田庆丰, 等. 高性能轮胎胎面胶“魔三角”性能平衡研究进展[J]. 橡胶工业, 2019, 66(5):388-394.

    TANG Y, ZHANG C H, TIAN Q F, et al. Research progress of “magic triangle” properties balance of high performance tire tread compound[J]. China Rubber Industry,2019,66(5):388-394(in Chinese).
    [4] 周彤辉, 阮文红, 王跃林, 等. 原位接枝改性纳米二氧化硅/聚丙烯复合材料Ⅱ:性能测试[J]. 复合材料学报, 2007, 24(3):45-51. doi: 10.3321/j.issn:1000-3851.2007.03.009

    ZHOU T H, RUAN W H, WANG Y L, et al. Polypropylene composites with nano-silica modified by in-situ grafting polymerization Ⅱ: Performance[J]. Acta Materiae Compositae Sinica,2007,24(3):45-51(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.03.009
    [5] ZHU A, DIAO H, RONG Q, et al. Preparation and properties of polylactide-silica nanocomposites[J]. Journal of Applied Polymer Science,2010,116(5):2866-2873.
    [6] MA X K, LEE N H, OH H J, et al. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects,2010,358(1-3):172-176.
    [7] MALLAKPOUR S, NAGHDI M. Fabrication and characterization of novel polyvinylpyrrolidone nanocomposites having SiO2 nanoparticles modified with citric acid and L(+)-ascorbic acid[J]. Polymer,2016,90:295-301. doi: 10.1016/j.polymer.2016.03.029
    [8] ZHANG C H, TANG Y, TIAN Q, et al. Preparation of dispersible nanosilica surface-capped by hexamethyl disilazane via an in situ surface-modification method and investigation of its effects on the mechanical properties of styrene-butadiene/butadiene rubber[J]. Journal of Applied Polymer Science,2019,136(30):47763.
    [9] JESIONOWSKI T, KRYSZTAFKIEWICZ A. Influence of silane coupling agents on surface properties of precipitated silicas[J]. Applied Surface Science,2001,172(1):18-32.
    [10] PONNAMMA D, RAMACHANDRAN R, HUSSAIN S, et al. Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites[J]. Composites Part A: Applied Science and Manufacturing,2015,77:164-171. doi: 10.1016/j.compositesa.2015.06.023
    [11] TIAN Q F, TANG Y, DING T, et al. Effect of nano-silica surface-capped by bis[3-(triethoxysilyl)propyl] tetrasulfide on the mechanical properties of styrene-butadiene rubber/butadiene rubber nanocomposites[J]. Composites Communications,2018,10:190-193. doi: 10.1016/j.coco.2018.10.005
    [12] HUANG Q, LIU M, MAO L, et al. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye[J]. Journal of Colloid & Interface Science,2017,499:170-179.
    [13] KHANI M M, WOO D, MUMPOWER E L, et al. Poly(alkyl methacrylate)-grafted silica nanoparticles in polyethylene nanocomposites[J]. Polymer,2017,109:339-348. doi: 10.1016/j.polymer.2016.12.046
    [14] 李小红, 曹智, 刘丰, 等. 反应性二氧化硅纳米微粒: 中国专利, ZL200410010125.9[P]. 2008-06-04.

    LI X H, CAO Z, LIU F, et al. Reactive silica nanoparticles: Chinese Patent, ZL200410010125.9[P]. 2008-06-04(in Chinese).
    [15] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [16] 中国国家标准化管理委员会. 硫化橡胶耐磨性能的测定(用阿克隆磨耗机): GB/T 1689—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Rubber vulcanized: Determination of abrasion resistance (Akron machine): GB/T 1689—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [17] MAO Y, TIAN Q F, ZHANG C H, et al. Vulcanization accelerator functionalized nanosilica: Effect on the reinforcement behavior of SSBR/BR[J]. Polymer Engineering & Science,2019,59(6):1270-1278.
    [18] BRINKE J W, DEBNATH S C, REUVEKAMP L A E M, et al. Mechanistic aspects of the role of coupling agents in silica-rubber composites[J]. Composites Science and Technology,2003,63(8):1165-1174. doi: 10.1016/S0266-3538(03)00077-0
    [19] WANG Y X, WU Y P, LI W J, et al. Influence of filler type on wet skid resistance of SSBR/BR composites: Effects from roughness and micro-hardness of rubber surface[J]. Applied Surface Science,2011,257(6):2058-2065. doi: 10.1016/j.apsusc.2010.08.129
    [20] RIMDUSIT S, THAMPRASOM N, SUPPAKARN N, et al. Effect of triphenyl phosphate flame retardant on properties of arylamine-based polybenzoxazines[J]. Journal of Applied Polymer Science,2013,130(2):1074-1083. doi: 10.1002/app.39248
    [21] PAYNE A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates Part Ⅰ[J]. Journal of Applied Polymer Science,1962,6(19):57-63. doi: 10.1002/app.1962.070061906
    [22] ZHONG B C, JIA Z X, LUO Y L, et al. A method to improve the mechanical performance of styrene-butadiene rubber via vulcanization accelerator modified silica[J]. Composites Science and Technology,2015,117:46-53. doi: 10.1016/j.compscitech.2015.05.012
    [23] LEI Y D. Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites[J]. Express Polymer Letters,2010,4(11):692-703. doi: 10.3144/expresspolymlett.2010.84
    [24] LIU J, CHENG Y, XU K, et al. Effect of nano-silica filler on microstructure and mechanical properties of poly dimethyl siloxane-based nanocomposites prepared by “inhibition-grafting” method[J]. Composites Science and Technology,2018,167:355-363. doi: 10.1016/j.compscitech.2018.08.014
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  249
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-20
  • 录用日期:  2019-10-12
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回