留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于径向基神经网络模型预测CuO-ZnO/(乙二醇-水)混合纳米流体导热系数

王江 翟玉玲 马明琰 姚沛滔 李龙

王江, 翟玉玲, 马明琰, 等. 基于径向基神经网络模型预测CuO-ZnO/乙二醇-水混合纳米流体导热系数[J]. 复合材料学报, 2020, 37(7): 1721-1730. doi: 10.13801/j.cnki.fhclxb.20191113.001
引用本文: 王江, 翟玉玲, 马明琰, 等. 基于径向基神经网络模型预测CuO-ZnO/乙二醇-水混合纳米流体导热系数[J]. 复合材料学报, 2020, 37(7): 1721-1730. doi: 10.13801/j.cnki.fhclxb.20191113.001
WANG Jiang, ZHAI Yuling, MA Mingyan, et al. Prediction of thermal conductivity of CuO-ZnO/(ethylene glycol-water) hybrid nanofluids based on radial basis neural network model[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1721-1730. doi: 10.13801/j.cnki.fhclxb.20191113.001
Citation: WANG Jiang, ZHAI Yuling, MA Mingyan, et al. Prediction of thermal conductivity of CuO-ZnO/(ethylene glycol-water) hybrid nanofluids based on radial basis neural network model[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1721-1730. doi: 10.13801/j.cnki.fhclxb.20191113.001

基于径向基神经网络模型预测CuO-ZnO/(乙二醇-水)混合纳米流体导热系数

doi: 10.13801/j.cnki.fhclxb.20191113.001
基金项目: 国家自然科学基金(51806090)
详细信息
    通讯作者:

    翟玉玲,博士,副教授,硕士生导师,研究方向为中低温余热高效利用 E-mail:zhaiyuling00@126.com

  • 中图分类号: O648

Prediction of thermal conductivity of CuO-ZnO/(ethylene glycol-water) hybrid nanofluids based on radial basis neural network model

  • 摘要: 采用两步法制备CuO-ZnO质量分数为0~3 wt%的CuO-ZnO/(乙二醇(EG)-水)混合纳米流体。其中,纳米颗粒CuO和ZnO质量比为50∶50不变,基液混合比(EG与去离子水的质量比)变化范围为20∶80~80∶20,分析其导热系数随温度(25~60℃)及基液比的变化规律。然后,以质量分数、温度及基液混合比为自变量,导热系数为因变量,采用径向基神经网络(RBFNN)模型预测导热系数,并与反向传播神经网络(BPNN)模型和多元线性回归(MLR)模型的预测值对比。结果表明,CuO-ZnO/(EG-水)纳米流体导热系数随温度的升高呈非线性增大,当CuO-ZnO质量分数为3 wt%及基液混合比为20∶80时,其导热系数与纯基液相比增大了14.03%~23.47%;但随着基液中的EG含量增大,导热系数非线性下降。总之,CuO-ZnO/(EG-水)纳米流体的导热系数受粒子随机运动和温度变化呈非线性变化。采用RBFNN模型预测CuO-ZnO/(EG-水)纳米流体的导热系数,其结果与BPNN模型和MLR模型对比,RBFNN模型性能评价指标均方根误差(RMSE)、平均相对百分比误差(MRPE)及误差平方和(SSE)更接近于0,多元统计系数R2更接近于1,说明RBFNN模型预测导热系数的精度更高,能够较好地表征不同参数对导热系数的影响,为CuO-ZnO/(EG-水)纳米流体的热物理性能参数的预测提供了一种有效的数据驱动建模方法。

     

  • 图  1  纳米流体制备过程

    Figure  1.  Preparation process of nanofluids

    图  2  反向传播神经网络(BPNN)拓扑结构示意图

    Figure  2.  Schematic of back propagation neural network (BPNN) topology

    w—Mass fraction; R—Mixing ratio; T—Temperature; knf—Thermal conductivity

    图  3  径向基神经网络(RBFNN)模型的基本结构(a)和导热系数 (b)

    Figure  3.  Basic structure(a) and thermal conductivity(b) of radial basis function neural network (RBFNN) model

    图  4  CuO-ZnO/(乙二醇(EG)-水)纳米流体导热系数随温度及混合比的变化

    Figure  4.  Thermal conductivity of CuO-ZnO/(ethylene glycol(EG)-water) nanofluids varied with temperature and mixing ratio

    图  5  质量分数为1 wt%的CuO-ZnO/(EG-水)纳米流体有效导热系数与文献相关数据及经验公式对比

    Figure  5.  Comparison of effective thermal conductivity of CuO-ZnO/ (EG-water) nanofluids between present data and data in literature and empirical correlations at 1 wt% mass fraction of CuO-ZnO

    kbf—Thermal conductivity of base liquids; knf—Thermal conductivity of hybrid nanofluids

    图  6  CuO-ZnO/(EG-水)纳米流体的BPNN回归实验导热系数

    Figure  6.  BPNN regression of CuO-ZnO/(EG-water) nanofluids of experimental thermal conductivity

    图  7  CuO-ZnO/(EG-水)纳米流体导热系数实验值与RBFNN预测值对比

    Figure  7.  Comparison of thermal conductivity of CuO-ZnO/(EG-water) nanofluids between experimental values and RBFNN predictive values

    图  8  MLR、BPNN和RBFNN预测模型残差值对比

    Figure  8.  Comparison of residuals between prediction models of MLR, BPNN and RBFNN

    图  9  CuO-ZnO/(EG-水)纳米流体导热系数的MLR、BPNN、RBFNN预测值与实验值对比

    Figure  9.  Comparison between MLR、BPNN and RBFNN predictions and experimental data of CuO-ZnO/(EG-water) nanofluids

    表  1  隐含层节点数目选取结果评价指标对比

    Table  1.   Comparison of evaluation results of the number of hidden layer nodes

    Number of neuronsTransfer functionMean squared error/10–4R2
    [3] [logsig] 1.3662 0.99887
    [4] [logsig] 2.1945 0.99863
    [5] [logsig] 3.8805 0.99875
    [6] [logsig] 3.7558 0.99881
    [7] [logsig] 3.9099 0.99820
    [8] [logsig] 0.4723 0.99944
    [9] [logsig] 1.1441 0.99901
    [10] [logsig] 3.6291 0.99926
    [11] [logsig] 12.3670 0.99614
    [12] [logsig] 2.3768 0.99836
    Note: R2—Duostatistical coefficient of multiple determination.
    下载: 导出CSV

    表  2  RBFNN、BPNN及多元线性回归(MLR)预测模型CuO-ZnO/(EG-水)纳米流体导热系数性能评估

    Table  2.   Performance evaluation for CuO-ZnO/(EG-water) nanofluids by predictionmodel of RBFNN, BPNN and multiple linear regression (MLR)

    Prediction modelRoot mean squared error $E_{\rm{RMSE}}$Mean relative percentage error $E_{\rm{MRPE}}$/%Sum of squared error $S_{\rm{SE}}$R2
    RBFNN 0.0038 0.70 0.0003 0.9999
    BPNN 0.0069 1.66 0.0011 0.9994
    MLR 0.0109 2.03 0.0199 0.9876
    下载: 导出CSV
  • [1] CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//1995 International Mechanical Engineering Congress and Exhibition. San Francisco: Argonne National Laboratory, 1995.
    [2] SARKAR J, GHOSH P, ADIL A. A review on hybrid nanofluids: Recent research, development and applications [J]. Renewable & Sustainable Energy Reviews, 2015, 43: 164-177.
    [3] SURESH S, VENKITARAJ K P, SELVAKUMAR P, et al. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects,2011,388(1-3):41-48.
    [4] BAGHBANZADEH M, RASHIDI A, RASHTCHIAN D, et al. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids[J]. Thermochimica Acta,2012,549:87-94.
    [5] ESFE M H, SAEDODIN S, YAN W M, et al. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3, nanoparticles[J]. Journal of Thermal Analysis and Calorimetry,2016,124(1):455-460. doi: 10.1007/s10973-015-5104-0
    [6] HWANG Y J, AHN Y C, SHIN H S, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids[J]. Current Applied Physics,2006,6(6):1068-1071. doi: 10.1016/j.cap.2005.07.021
    [7] TIMOFEEVA E V, GAVRILOV A N, MCCLOSKEY J M, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory[J]. Physical Review E,2007,76(6):061203. doi: 10.1103/PhysRevE.76.061203
    [8] LEE D, KIM J W, KIM B G. A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension[J]. The Journal of Physical Chemistry B,2006,110(9):4323-4328. doi: 10.1021/jp057225m
    [9] JIA T, ZHANG Y, MA H B, et al. Investigation of the characteristics of heat current in a nanofluids based on molecular dynamics simulation[J]. Applied Physics A,2012,108(3):537-544. doi: 10.1007/s00339-012-7019-y
    [10] WEI X, ZHU H, KONG T, et al. Synthesis and thermal conductivity of Cu2O nanofluids[J]. International Journal of Heat and Mass Transfer,2009,52(19-20):4371-4374. doi: 10.1016/j.ijheatmasstransfer.2009.03.073
    [11] XIE H, WANG J, XI T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics,2002,91(7):4568-4572. doi: 10.1063/1.1454184
    [12] 曾广胜, 孙刚. 工艺参数对淀粉/EVA生物质材料挤出发泡的影响及BP神经网络的预[J]. 复合材料学报, 2014, 31(2):512-517.

    ZENG Guangsheng, SUN Gang. Effect of process parameters on extrusion foaming of starch/EVA biomass materials and prediction of BP neural network[J]. Acta Materiae Compositae Sinica,2014,31(2):512-517(in Chinese).
    [13] HOJJAT M, ETEMAD S G, BAGHERI R, et al. Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network[J]. International Journal of Heat and Mass Transfer,2011,54(5-6):1017-1023. doi: 10.1016/j.ijheatmasstransfer.2010.11.039
    [14] ESFE M H, SAEDODIN S, BAHIRAEI M, et al. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network[J]. Journal of Thermal Analysis and Calorimetry,2014,118(1):287-294. doi: 10.1007/s10973-014-4002-1
    [15] ESFE M H, SAEDODIN S, NADERI A, et al. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods[J]. International Communications in Heat and Mass Transfer,2015,63:35-40. doi: 10.1016/j.icheatmasstransfer.2015.01.001
    [16] ESFE M H, WONGWISES S, NADERI A, et al. Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation[J]. International Communications in Heat and Mass Transfer,2015,66:100-104. doi: 10.1016/j.icheatmasstransfer.2015.05.014
    [17] ESFE M H, AFRAND M, WONGWISES S, et al. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2/EG using experimental data[J]. International Communications in Heat and Mass Transfer,2015,67:46-50. doi: 10.1016/j.icheatmasstransfer.2015.06.015
    [18] ESFE M H, SAEDODIN S, SINA N, et al. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid[J]. International Communications in Heat and Mass Transfer,2015,68:50-57. doi: 10.1016/j.icheatmasstransfer.2015.06.013
    [19] ESFE M H, ROSTAMIAN H, AFRAND M, et al. Modeling and estimation of thermal conductivity of MgO-water/EG (60∶40) by artificial neural network and correlation[J]. International Communications in Heat and Mass Transfer,2015,68:98-103. doi: 10.1016/j.icheatmasstransfer.2015.08.015
    [20] ESFE M H, TATAR A, AHANGAR M R H, et al. A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant[J]. Physica E: Low-dimensional Systems and Nanostructures,2018,96:85-93. doi: 10.1016/j.physe.2017.08.019
    [21] ESFE M H, NADERI A, AKBARI M, et al. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods[J]. Journal of Thermal Analysis and Calorimetry,2015,121(3):1273-1278. doi: 10.1007/s10973-015-4565-5
    [22] ESFE M H, AHANGAR M R H, TOGHRAIE D, et al. Designing artificial neural network on thermal conductivity of Al2O3/water-EG (60–40%) nanofluid using experimental data[J]. Journal of Thermal Analysis and Calorimetry,2016,126(2):837-843.
    [23] MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation,1989,1(2):281-294. doi: 10.1162/neco.1989.1.2.281
    [24] 傅惠民, 岳晓蕊. 多元混合数据回归分析方法[J]. 航空动力学报, 2011, 26(1):173-177.

    FU Huimin, YUE Xiaorui. Multivariate mixed data regression analysis[J]. Journal of Aerospace Power,2011,26(1):173-177(in Chinese).
    [25] HUANG G B, SARATCH P, MEMBER S, et al. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE Transactions on Systems, Man, and Cybernetics,2004,34(6):2284-2292. doi: 10.1109/TSMCB.2004.834428
    [26] 张德贤. 前向神经网络合理隐含层结点个数估计[J]. 计算机工程与应用, 2003, 39(5):21-23. doi: 10.3321/j.issn:1002-8331.2003.05.007

    ZHANG Dexian. Estimation of reasonable implicit layer nodes in feedforward neural networks[J]. Computer Engineering and Applications,2003,39(5):21-23(in Chinese). doi: 10.3321/j.issn:1002-8331.2003.05.007
    [27] DAI H, YANG Z, GUO S. Real-time traffic volume estimation with fuzzy linear regression[C]//2006 6th World Congress on Intelligent Control and Automation. Dalian: IEEE, 2006.
    [28] CHIAM H W, AZMI W H, USRI N A, et al. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture[J]. Experimental Thermal and Fluid Science,2016,81:420-429.
    [29] PARSIAN A, AKBARI M. New experimental correlation for the thermal conductivity of ethylene glycol containing Al2O3-Cu hybrid nanoparticles[J]. Journal of Thermal Analysis and Calorimetry,2017,131(3):1-9.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  200
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-09-29
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回