留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验

吴楠 郝旭峰 史耀辉 鞠博文 钱元 蔡登安 周光明

吴楠, 郝旭峰, 史耀辉, 等. 高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验[J]. 复合材料学报, 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002
引用本文: 吴楠, 郝旭峰, 史耀辉, 等. 高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验[J]. 复合材料学报, 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002
WU Nan, HAO Xufeng, SHI Yaohui, et al. Simulation and experiment on thermal deformation influence parameters of high accuracy carbon fiber reinforced plastic sandwiched antenna panels[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002
Citation: WU Nan, HAO Xufeng, SHI Yaohui, et al. Simulation and experiment on thermal deformation influence parameters of high accuracy carbon fiber reinforced plastic sandwiched antenna panels[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1619-1628. doi: 10.13801/j.cnki.fhclxb.20191107.002

高精度碳纤维增强树脂复合材料夹层天线面板热变形影响参数仿真与实验

doi: 10.13801/j.cnki.fhclxb.20191107.002
基金项目: 南京航空航天大学(实验室)开放基金(kfjj20180107);上海航天科技创新基金(SAST2018-071);江苏省基础研究计划(自然科学基金)( BK20190394)
详细信息
    通讯作者:

    周光明,博士,博士生导师,研究方向为先进复合材料工艺及应用 E-mail:zhougm@nuaa.edu.cn

  • 中图分类号: TB332

Simulation and experiment on thermal deformation influence parameters of high accuracy carbon fiber reinforced plastic sandwiched antenna panels

  • 摘要: 为满足亚毫米波、太赫兹波段等高频天线反射面的应用需求,采用附加树脂修型技术制得1米级、面形精度优于10 μm均方差(RMS)的碳纤维增强树脂(CFRP)复合材料天线面板。主要开展了针对高精度CFRP复合材料面板在极端低温环境下的热变形机制研究。根据基础材料性能测试数据,建立面板的有限元仿真模型,预测大温差工况下多结构参数面板的热变形残差,分析了影响面板热变形特性的主要因素。比较了铝蜂窝和碳管阵列夹芯两种面板结构热变形特性的差异。结果表明,碳管夹芯结构面板具备更高的比刚度和热稳定性。通过仿真结构优化给出了面板的结构设计参数,并重新试制了原型面板。采用基于高精度数字摄影测量的实验方法,对铝蜂窝和碳管阵列两种夹芯结构原型面板在低温环境下的热变形误差进行了测量,通过分析实验与仿真结果的误差来源,讨论了有限元预测方法的可行性,给出了针对高精度CFRP复合材料面板设计及工艺方法的指导意见。

     

  • 图  1  反射器单瓣面板结构

    Figure  1.  Structure of single melon in reflector

    图  2  附加用于修正面形的树脂层

    Figure  2.  Additional resin coating replication for surface shape modification

    图  3  附加树脂修型前后的面形误差分布

    Figure  3.  Surface error distribution before and after additional resin coating process

    RMS—Root-mean-square; f—Focus

    图  4  碳纤维增强树脂(CFRP)复合材料夹层反射面板有限元模型

    Figure  4.  Finite element model of carbon fiber reinforced plastic(CFRP) composite sandwiched reflector panel

    图  5  CFRP复合材料夹层天线面板蒙皮拉伸试验和压缩试验

    Figure  5.  Stretching test and compression test of sheet of CFRP composite sandwiched antenna panel

    图  6  铝蜂窝结构压缩试验和剪切试验

    Figure  6.  Compression test and shear test of aluminum honeycomb

    图  7  CFRP复合材料碳管压缩试验和双搭剪切试验

    Figure  7.  Compression test and double-set shear test of CFRP composite tube

    图  8  不同铺层方式、铺层角度误差和厚度的蒙皮和不同厚度的芯材对CFRP复合材料夹层天线面板仿真结果的影响

    Figure  8.  Effects of different modes and angle errors of lay-out and thicknesses of sheets and different thicknesses of core on simulation results of CFRP composite sandwiched antenna panel

    图  9  芯材的不同加工方式

    Figure  9.  Different ways of core processing

    图  10  不同种类、厚度和加工方式的芯材对CFRP复合材料夹层天线面板仿真结果的影响

    Figure  10.  Effects of different types, thicknesses and processing processes of core on simulation results of CFRP composite sandwiched antenna panel

    图  11  摄影测量系统

    Figure  11.  Photogrammetry system

    图  12  测量的重复性误差

    Figure  12.  Repeatability error of measurement

    图  13  原型面板及初始型面精度

    Figure  13.  Prototype panel and initial surface RMS

    图  14  CFRP复合材料夹层天线面板有限元模型与试验的面形误差结果比较

    Figure  14.  Comparison of thermal error results between finite element model and experiment for CFRP composite sandwiched antenna panel

    表  1  蒙皮及芯材的性能参数

    Table  1.   Property parameters of sheet and core

    PropertySheetAluminum honeycomb(l=4 mm/t1=0.03 mm)CFRP tube (r=20 mm/t2=0.2 mm)
    Elastic modulus E11/GPa 125.4 0.01 0.01
    E22/GPa 10.6 0.01 0.01
    E33/GPa 0.67 0.34
    Shear modulus G12/GPa 4 0.01 0.01
    G23/GPa 0.25 0.3
    G13/GPa 0.15 0.3
    Poisson’s ratio μ12 0.27 0.3 0.9
    μ23 0.01 0.01
    μ13 0.01 0.01
    CTE α1/10−6−1 1.8 23 2.5
    α2/10−6−1 23 2.5
    α3/10−6−1 23 2.5
    Notes:CTE—Coefficient of thermal expansion; l—Length of aluminum honeycomb; t1—Thickness of aluminum honeycomb; r—Radius of composite tube; t2—Thickness of CFRP composite tube.
    下载: 导出CSV

    表  2  CFRP复合材料夹层天线面板多种仿真工况的参数

    Table  2.   Parameters of multiple simulated conditions for CFRP composite sandwiched antenna panel

    ConditionThickness of sheets/mmThickness of core/mmLay-out of sheetsAngle error of lay-out/(°)
    2.4 65 Orthogonal/quasi-isotropy
    0.8–3.6 65 Orthogonal/quasi-isotropy
    2.4 35–65 Quasi-isotropy
    2.4 65 Quasi-isotropy 0–10
    下载: 导出CSV

    表  3  芯材的仿真参数

    Table  3.   Parameters of core

    ConditionTypes of coreThickness of core/mmCore processing process
    Aluminum honeycomb/CFRP tube array35–65Surface machining /Surface squeeze
    下载: 导出CSV

    表  4  原型面板的参数

    Table  4.   Parameters of prototype panel

    NumberThickness of sheets/mmTypes of
    core
    Fiber volume fraction/vol%Thickness of core/mmLay-out
    of sheetss
    Core processing
    process
    Design value 2.2 60/60 65 Orthogonal Surface squeeze
    A 2.5/2.2 Aluminum honeycomb 52.4/60.5 65 Orthogonal Surface squeeze
    B 2.5/2.2 CFRP tube array 51.5/62.3 65 Orthogonal Surface squeeze
    下载: 导出CSV
  • [1] RUZE J. Antenna tolerance theory: A review[C]//Proceedings of the IEEE. IEEE, 1966, 54(4): 633-640.
    [2] HAMIDOUCHE M, YOUNG E, MARCUM P, et al. Stratospheric observatory for infrared astronomy[C]//Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics. Marseille: [s. n.], 2010.
    [3] RUHL J, ADE P A R, CARLSTROM J E, et al. The south pole telescope[C]//Proceedings Volume 5498, Millimeter and Submillimeter Detectors for Astronomy II. Glasgow: SPIE, 2004.
    [4] YANG J, ZUO Y X, LOU Z, et al. Conceptual design studies of the 5 m terahertz antenna for Dome A, Antarctica[J]. Research in Astronomy and Astrophysics,2013,13(12):1493-1508. doi: 10.1088/1674-4527/13/12/010
    [5] UKITA N, SAITO M, EZAWA H, et al. Design and performance of the ALMA-J prototype antenna[C]//Proceedings Volume 5489, Ground-based Telescopes. Glasgow:SPIE, 2004.
    [6] MARCHIORI G, RAMPINI F. The European ALMA project: Design, manufacturing and performances[C]//Proceedings of the Fourth European Conference on Antennas and Propagation. IEEE, 2010.
    [7] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [8] BAARS J W M, MARTIN R N, MANGUM J G, et al. The Heinrich Hertz telescope and the submillimeter telescope observatory[J]. Publications of the Astronomical Society of the Pacific,1999,111(759):627-646. doi: 10.1086/316365
    [9] BAARS J W M, MARTIN R N. The Heinrich Hertz telescope: A new instrument for submillimeter-wavelength astronomy[J]. Reviews in Modern Astronomy,1996,9:111-126.
    [10] BAARS J W M, HOOGHOUDT B G, MEZGER P G, et al. The IRAM 30-m millimeter radio telescope on Pico Veleta, Spain[J]. Astronomy and Astrophysics,1987,175(1-2):319-326.
    [11] 郝长岭, 周贤宾, 李志光, 等. 紧缩场蜂窝夹层反射面板材料参数优化反求[J]. 复合材料学报, 2008, 25(3):190-196. doi: 10.3321/j.issn:1000-3851.2008.03.032

    HAO C L, ZHOU X B, LI Z G, et al. Material parameter identification of sandwich reflector panels of compact antenna test range by genetic algorithm-based inverse method[J]. Acta Materiae Compositae Sinica,2008,25(3):190-196(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.032
    [12] HOFFMANN W F, HELWIG G, SCHEULEN D. Thermal stability tests of CFRP sandwich panels for far infrared astronomy[C]//29th Annual Technical Symposium. San Diego: SPTE, 1985.
    [13] WILLIS P B, DYER J E, DUMMER S. Fabrication and thermo-optical properties of the MLS composite primary reflector[C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Denver:SPIE, 1999.
    [14] MARTIN R N, ROMEO R C. Lightweight optical telescope structures fabricated from CFRP composites[C]//Optical Engineering and Applications. California: SPIE, 2007.
    [15] STUTE T, WULZ G, SCHEULEN D. Recent developments of advanced structures for space optics at Astrium, Germany[C]//Optical Science and Technology, SPIE’s 48th Annual Meeting. California: SPIE, 2003.
    [16] MARTIN R N, ROMEO R C, BARBER G, et al. Lightweight CFRP spherical mirrors for the LHCb RICH-1 detector[C]//Optical Engineering and Applications. California: SPIE, 2007.
    [17] 周星驰, 唐振刚, 周徐斌, 等. CFRP圆形胞元蜂窝芯层面外剪切模量[J]. 复合材料学报, 2018, 35(10):2777-2785.

    ZHOU X C, TANG Z G, ZHOU X B, et al. The external shear modulus of CFRP circular cell honeycomb[J]. Acta Materiae Compositae Sinica,2018,35(10):2777-2785(in Chinese).
    [18] 江万松, 王欣, 高红成, 等. 碳纤维天线反射体制造技术[J]. 玻璃钢/复合材料, 2004(5):38-40. doi: 10.3969/j.issn.1003-0999.2004.05.013

    JIANG W S, WANG X, GAO H C, et al. Manufacturing technique of CFRP antenna reflector[J]. Fiber Reinforced Plastics/Composites,2004(5):38-40(in Chinese). doi: 10.3969/j.issn.1003-0999.2004.05.013
    [19] MASSARELLO J J, WELSH J S, HOCHHALTER J D, et al. Fiber print-through mitigation technique for composite mirror replication[J]. Optical Engineering,2006,45(12):123401. doi: 10.1117/1.2402497
    [20] LEENDERTZ J A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect[J]. Journal of Physics E: Scientific Instruments,1970,3(3):214-218. doi: 10.1088/0022-3735/3/3/312
    [21] BENNETT J, ANDERSON A, MCINNES P, et al. Microwave holographic metrology of large reflector antenna[J]. IEEE Transactions on Antennas & Propagation,1976,24(3):295-303.
    [22] 王保丰, 李广云, 李宗春, 等. 高精度数字摄影测量技术在50 m大型天线中的应用[J]. 测绘工程, 2007, 16(1):42-46. doi: 10.3969/j.issn.1006-7949.2007.01.011

    WANG B F, LI G Y, LI Z C, et al. Application of high accuracy digital photogrammetry technology in a 50 meter large antenna[J]. Engineering of Surveying and Mapping,2007,16(1):42-46(in Chinese). doi: 10.3969/j.issn.1006-7949.2007.01.011
    [23] 范钦红, 范生宏, 左营喜, 等. 基于数字摄影测量技术的13.7 m毫米波天线面形检测[J]. 天文学报, 2010, 51(2):210-216.

    FAN Q H, FAN S H, ZUO Y X, et al. Application of digital industrial photogrammetric technology to measure the surface accuracy of 13.7 m millimeter-wave radio telescope antenna[J]. Acta Astronomica Sinica,2010,51(2):210-216(in Chinese).
    [24] 娄铮, 钱元, 范生宏, 等. 基于数字摄影测量技术的高精度低温面形测量[J]. 天文学报, 2016, 57(1):115-124.

    LOU Z, QIAN Y, FAN S H, et al. High-precision photogrammetric surface figure measurements under cryogenic environment[J]. Acta Astronomica Sinica,2016,57(1):115-124(in Chinese).
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  197
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 录用日期:  2019-10-31
  • 网络出版日期:  2019-11-07
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回