留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响

孔祥清 何文昌 邢丽丽 王学志

孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7): 1763-1773. doi: 10.13801/j.cnki.fhclxb.20191106.001
引用本文: 孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7): 1763-1773. doi: 10.13801/j.cnki.fhclxb.20191106.001
KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1763-1773. doi: 10.13801/j.cnki.fhclxb.20191106.001
Citation: KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1763-1773. doi: 10.13801/j.cnki.fhclxb.20191106.001

钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响

doi: 10.13801/j.cnki.fhclxb.20191106.001
基金项目: 国家自然科学基金(51479168);辽宁省自然科学基金(SY2016001);辽宁省"兴辽英才计划"项目(XLYC1807044)
详细信息
    通讯作者:

    孔祥清,博士,教授,硕士生导师,研究方向为新型材料及结构力学性能 E-mail:xqkong@lnut.edu.cn

  • 中图分类号: TU528.572

Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete

  • 摘要: 为研究钢纤维(SF)与聚丙烯纤维(PPF)混杂后对再生混凝土(RAC)抗冲击性能的影响,采用落锤弯曲冲击试验装置对素RAC、SF/RAC、PPF/RAC和SF-PPF/RAC进行抗冲击试验;分析了不同纤维掺量和掺入方式对RAC抗冲击性能的影响;采用数理统计模型对冲击试验结果进行拟合和失效概率预测,并对SF-PPF/RAC抗冲击性能的阻裂增强机制进行深入分析。结果表明:单掺或混杂纤维均可提高RAC的抗冲击性能;其中混合掺入体积分数为1.5vol%的SF和体积分数为0.9vol%的PPF时,RAC抗冲击耗能的提高幅度最大,RAC基体的延性和韧性最佳。SF-PPF/RAC的抗冲击次数很好地服从两参数Weibull分布。SF与PPF混杂对改善RAC的抗冲击性能呈现出优异的混杂增强效应。

     

  • 图  1  试验用材料

    Figure  1.  Materials for testing

    图  2  混凝土落锤抗弯冲击试验装置

    Figure  2.  Drop weight impact test device for concrete

    图  3  SF-PPF/RAC的抗冲击能力

    Figure  3.  Impact resistance contrast of SF-PPF/RAC

    图  4  SF-PPF/RAC的延性比和韧性系数

    Figure  4.  Ductility ratios and toughness coefficients of SF-PPF/RAC

    图  5  SF-PPF/RAC试件冲击破坏断裂面

    Figure  5.  Impact damage surfaces of SF-PPF/RAC specimens

    图  6  SF-PPF/RAC抗冲击破坏次数N2的Weibull分布线性拟合曲线

    Figure  6.  Linear regression curves of impact resistance number N2 in Weibull distribution of SF-PPF/RAC

    图  7  不同失效概率下SF-PPF/RAC冲击破坏次数N2与SF体积分数的关系曲线

    Figure  7.  Relation curves between impact number N2 and SF volume fraction of SF-PPF/RAC under different failure probabilities

    图  8  不同失效概率下SF-PPF/RAC冲击破坏次数N2与PPF体积分数的关系曲线

    Figure  8.  Relation curves between impact number N2 and PPF volume fraction of SF-PPF/RAC under different failure probabilities

    图  9  SF-PPF/RAC抗冲击性能的混杂增强效应

    Figure  9.  Hybrid enhancement effect of impact resistance of SF-PPF/RAC

    图  10  SF-PPF/RAC试件冲击破坏形态

    Figure  10.  Impact failure forms of SF-PPF/RAC specimens

    图  11  SF-PPF/RAC的阻裂机制模型

    Figure  11.  Crack resistance model of SF-PPF/RAC

    图  12  SF-PPF/RAC试件破坏断面的裂缝

    Figure  12.  Crack on fracture surface of SF-PPF/RAC

    表  1  再生粗骨料的物理性能

    Table  1.   Physical properties of recycle coarse aggregate

    Size/mmApparent density/(kg·m–3)Bulk density/(kg·m–3)Crushing index/%Water absorption/%Mud content/%
    5–202 6401 46017.13.40.2
    下载: 导出CSV

    表  2  钢纤维(SF)和聚丙烯纤维(PPF)的物理性能

    Table  2.   Physical properties of steel fiber(SF) and polypropylene fiber(PPF)

    Fiber typeLength/mmAspect rationDensity/(g·cm−3)Tensile strength/MPaElastic modulus/GPa
    SF 30 60 7.8 ≥800 210
    PPF 12 343 0.91 ≥350 3.5
    下载: 导出CSV

    表  3  SF-PPF/再生混凝土(RAC)试件编号和配合比设计

    Table  3.   Specimen codes and mix design of SF-PPF/recycled aggregate concrete(RAC)

    No.NotationCement/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Water/
    (kg·m−3)
    Aggregate/
    (kg·m−3)
    Water reducer/
    (kg·m−3)
    SF/vol%PPF/vol%
    RC1 RAC 540 618 190 1 052 2.16
    RC2 SF0.5/RAC 540 618 190 1 052 2.16 0.5
    RC3 SF1.0/RAC 540 618 190 1 052 2.16 1.0
    RC4 SF1.5/RAC 540 618 190 1 052 2.16 1.5
    RC5 PPF0.6/RAC 540 618 190 1 052 2.16 0.6
    RC6 PPF0.9/RAC 540 618 190 1 052 2.16 0.9
    RC7 PPF1.2/RAC 540 618 190 1 052 2.16 1.2
    RC8 SF0.5-PPF0.6/RAC 540 618 190 1 052 2.16 0.5 0.6
    RC9 SF0.5-PPF0.9/RAC 540 618 190 1 052 2.16 0.5 0.9
    RC10 SF0.5-PPF1.2/RAC 540 618 190 1 052 2.16 0.5 1.2
    RC11 SF1.0-PPF0.6/RAC 540 618 190 1 052 2.16 1.0 0.6
    RC12 SF1.0-PPF0.9/RAC 540 618 190 1 052 2.16 1.0 0.9
    RC13 SF1.0-PPF1.2/RAC 540 618 190 1 052 2.16 1.0 1.2
    RC14 SF1.5-PPF0.6/RAC 540 618 190 1 052 2.16 1.5 0.6
    RC15 SF1.5-PPF0.9/RAC 540 618 190 1 052 2.16 1.5 0.9
    RC16 SF1.5-PPF1.2/RAC 540 618 190 1 052 2.16 1.5 1.2
    下载: 导出CSV

    表  4  SF-PPF/RAC的抗压强度和抗冲击试验结果

    Table  4.   Test results of compressive strength and impact resistance of SF-PPF/RAC

    No.Notationfcu/MPaSpecimen numberAverage valueImpact energy/JCμ
    123456
    N1/N2N1/ N2N1/ N2N1/ N2N1/ N2N1/ N2N1/ N2N1/ N2
    RC1 RAC 49.2 2/3 2/3 3/4 3/4 4/5 4/6 3/4 26.5/35.3
    RC2 SF0.5/RAC 55.2 3/12 3/16 4/18 4/21 5/18 6/23 4/18 35.3/158.8 4.5 3.5
    RC3 SF1.0RAC 58.4 4/42 4/54 5/51 5/58 6/63 6/74 5/57 44.1/502.7 14.3 10.4
    RC4 SF1.5/RAC 60.6 5/62 6/75 7/79 7/92 8/85 8/105 7/83 61.7/723.1 20.8 10.9
    RC5 PPF0.6/RAC 48.1 2/8 3/11 3/12 4/13 4/19 5/15 4/13 35.3/114.7 3.3 2.3
    RC6 PPF0.9/RAC 47.2 3/9 3/12 4/14 5/15 5/17 6/23 4/15 35.3/132.3 3.8 2.8
    RC7 PPF1.2/RAC 46.9 3/14 4/15 5/21 5/25 6/24 6/29 5/21 44.1/185.2 5.3 3.2
    RC8 SF0.5-PPF0.6/RAC 54.1 3/16 3/24 4/17 4/32 5/26 5/41 4/26 35.3/229.3 6.5 5.5
    RC9 SF0.5-PPF0.9/RAC 52.7 3/29 3/35 4/39 5/37 7/41 7/51 5/37 44.1/326.3 9.3 6.4
    RC10 SF0.5-PPF1.2/RAC 50.8 3/43 4/45 4/51 5/54 6/63 8/68 5/54 44.1/476.3 13.5 9.8
    RC11 SF1.0-PPF0.6/RAC 56.2 4/64 6/86 6/104 7/94 7/107 8/121 6/96 52.9/846.7 24.0 15.0
    RC12 SF1.0-PPF0.9/RAC 50.4 4/93 5/105 6/108 7/116 7/127 9/144 6/115 52.9/1 014.3 28.8 18.2
    RC13 SF1.0-PPF1.2/RAC 47.8 5/137 6/167 7/156 7/185 8/174 12/215 8/172 70.6/1 517.0 43.0 20.5
    RC14 SF1.5-PPF0.6/RAC 57.4 5/184 8/136 8/162 9/189 11/207 13/236 9/186 79.4/1 640.5 46.5 19.7
    RC15 SF1.5-PPF0.9/RAC 45.2 6/188 8/225 10/248 11/236 13/256 15/275 11/238 97.0/2 099.2 59.5 20.6
    RC16 SF1.5-PPF1.2/RAC 44.2 5/114 7/176 8/195 9/215 13/257 15/225 10/197 88.2/1 737.5 49.3 18.7
    Notes: fcu—Cube compressive strength at age of 28d; C—Toughness coefficient; μ—Ductility ratio. N1, N2—Impact number.
    下载: 导出CSV

    表  5  SF-PPF/RAC抗冲击次数的Weibull分布线性回归分析结果

    Table  5.   Results of linear regression in Weibull distribution for impact resistance numbers of SF-PPF/RAC

    NumberNotationRegression coefficient αRegression coefficient βCorrelation coefficient R2
    N1N2N1N2N1N2
    RC1 RAC 3.179 3.612 3.869 5.540 0.841 0.851
    RC2 SF0.5/RAC 3.612 4.579 5.540 13.641 0.852 0.961
    RC3 SF1.0RAC 5.447 5.434 9.194 22.385 0.839 0.969
    RC4 SF1.5/RAC 5.710 5.820 11.399 26.138 0.942 0.979
    RC5 PPF0.6/RAC 3.230 3.576 4.416 9.548 0.943 0.966
    RC6 PPF0.9/RAC 3.476 3.286 5.479 9.262 0.870 0.961
    RC7 PPF1.2/RAC 3.878 3.504 6.504 11.104 0.976 0.919
    RC8 SF0.5-PPF0.6/RAC 4.322 2.823 6.399 9.546 0.840 0.913
    RC9 SF0.5-PPF0.9/RAC 2.571 5.505 4.393 20.541 0.843 0.920
    RC10 SF0.5-PPF1.2/RAC 2.954 5.634 5.104 22.898 0.913 0.909
    RC11 SF1.0-PPF0.6/RAC 4.222 4.708 8.201 21.900 0.895 0.965
    RC12 SF1.0-PPF0.9/RAC 3.672 6.726 7.157 32.376 0.971 0.934
    RC13 SF1.0-PPF1.2/RAC 3.777 6.879 7.910 35.866 0.885 0.949
    RC14 SF1.5-PPF0.6/RAC 3.156 2.822 7.301 14.833 0.942 0.967
    RC15 SF1.5-PPF0.9/RAC 3.182 7.957 7.845 43.985 0.996 0.967
    RC16 SF1.5-PPF1.2/RAC 2.573 3.632 6.119 19.469 0.954 0.931
    下载: 导出CSV

    表  6  不同失效概率下SF-PPF/RAC的抗冲击次数

    Table  6.   Impact resistance numbers of SF-PPF/RAC under different failure probabilities

    NumberNotationFailure probability Pr
    5%15%30%
    N1N2N1N2N1N2
    RC1 RAC 1 2 2 3 2 4
    RC2 SF0.5/RAC 2 10 3 13 4 16
    RC3 SF1.0RAC 3 36 4 44 5 51
    RC4 SF1.5/RAC 4 54 5 65 6 75
    RC5 PPF0.6/RAC 2 6 2 9 3 11
    RC6 PPF0.9/RAC 2 7 3 10 4 12
    RC7 PPF1.2/RAC 3 10 3 14 4 18
    RC8 SF0.5-PPF0.6/RAC 2 10 3 16 4 20
    RC9 SF0.5-PPF0.9/RAC 2 24 3 30 4 35
    RC10 SF0.5-PPF1.2/RAC 2 34 3 42 4 49
    RC11 SF1.0-PPF0.6/RAC 4 56 5 71 6 84
    RC12 SF1.0-PPF0.9/RAC 3 79 4 94 5 106
    RC13 SF1.0-PPF1.2/RAC 4 119 5 141 6 158
    RC14 SF1.5-PPF0.6/RAC 4 67 6 101 7 133
    RC15 SF1.5-PPF0.9/RAC 5 173 7 200 9 221
    RC16 SF1.5-PPF1.2/RAC 3 94 5 129 7 160
    下载: 导出CSV
  • [1] BEHERA M, BHATTACHARYYA S K, MINOCHA A K, et al. Recycled aggregate from C&D waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review[J]. Construction and Building Materials,2014,68:501-516. doi: 10.1016/j.conbuildmat.2014.07.003
    [2] KHOURY E, CAZACLIU B, REMOND S. Impact of the initial moisture level and pre-wetting history of recycled concrete aggregates on their water absorption[J]. Materials and Structures,2017,50(5):229. doi: 10.1617/s11527-017-1093-8
    [3] 史才军, 曹芷杰, 谢昭彬. 再生混凝土力学性能的研究进展[J]. 材料导报, 2016, 30(23):96-103.

    SHI Caijun, CAO Zhijie, XIE Zhaobin. Research progress in the mechanical properties of recycled aggregate concrete[J]. Materials Review,2016,30(23):96-103(in Chinese).
    [4] XIE J H, HUANG L, GUO Y C, et al. Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres[J]. Construction and Building Materials,2018,178:612-623.
    [5] 章文姣, 鲍成成, 孔祥清, 等. 混杂纤维掺量对再生混凝土力学性能的影响研究[J]. 科学技术与工程, 2016, 16(13):106-112. doi: 10.3969/j.issn.1671-1815.2016.13.019

    ZHANG Wenjiao, BAO Chengcheng, KONG Xiangqing, et al. Experimental study on mechanical properties of hybrid fiber basic of recycled concrete[J]. Science Technology and Engineering,2016,16(13):106-112(in Chinese). doi: 10.3969/j.issn.1671-1815.2016.13.019
    [6] NILI M, AFROUGHSABET V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete[J]. Construction & Building Materials,2010,24(6):927-933.
    [7] 王璞, 黄真, 周岱, 等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击, 2012, 31(12):14-18.

    WANG Pu, HUANG Zhen, ZHOU Dai, et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J]. Journal of Vibration and Shock,2012,31(12):14-18(in Chinese).
    [8] HSIE M, TU C, SONG P S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete[J]. Materials Science & Engineering A,2008,494(1-2):153-157.
    [9] OUYANG D, KONG L J, FU H, et al. Experimental investigations on mechanical properties and fire resistance of steel-polypropylene hybrid fiber reinforced concrete[J]. Advanced Materials Research,2013,772:182-187. doi: 10.4028/www.scientific.net/AMR.772.182
    [10] CHEN B, LIU J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability[J]. Cement and Concrete Research,2005,35(5):913-917. doi: 10.1016/j.cemconres.2004.07.035
    [11] TABATABAEIAN M, KHALOO A, JOSHAGHANI A, et al. Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC[J]. Construction and Building Materials,2017,147:497-509. doi: 10.1016/j.conbuildmat.2017.04.181
    [12] 景嘉骅. 混杂纤维再生砖骨料混凝土试验及性能计算方法[D]. 郑州: 郑州大学, 2018.

    JING Jiahua. The experiment and performance calculation method of hybrid fibers reinforced recycled bricks aggregate concrete[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [13] MESBAH H A, BUYLE-BODIN F. Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars[J]. Construction & Building Materials,1999,13(8):439-447.
    [14] 陈图真. 钢纤维和聚丙烯粗纤维改性再生混凝土力学性能试验研究[D]. 广州: 广东工业大学, 2015.

    CHEN Tuzhen. Experimental study on mechanical properties of steel fiber and macro polypropylene fiber reinforced recycled concrete[D]. Guangzhou: Guangdong University of Technology, 2015(in Chinese).
    [15] Amerian Concrete Institute. Measurement of properties of fiber reinforced concrete: ACI 544.2R—89[S]. Detroit: Amerian Concrete Institute, 1999.
    [16] 中国国家标准化管理委员会. 水泥混凝土和砂浆用合成纤维: GB/T 21120—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Synthetic fibres for cement concrete and mortar: GB/T 21120—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [17] 潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报, 2017, 20(6):956-961. doi: 10.3969/j.issn.1007-9629.2017.06.021

    PAN Huimin, MA Yunzhao. Impact resistance of steel fiber reinforced concrete and its mechanism crack resistance and toughening[J]. Journal of Building Structures,2017,20(6):956-961(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.021
    [18] 邓宗才, 薛会青, 刘爱军. 纤维素纤维及混杂纤维混凝土的抗弯冲击性能[J]. 北京工业大学学报, 2008, 34(11):1149-1153.

    DENG Zongcai, XUE Huiqing, LIU Aijun. Flexural impact behavior of cellulose and hybrid fiber reinforced concrete beams[J]. Journal of Beijing University of Technology,2008,34(11):1149-1153(in Chinese).
    [19] 陈相宇. 纤维混凝土抗冲击性能的试验研究[D]. 大连: 大连理工大学, 2010.

    CHEN Xiangyu. Experimental research on impact resistance of fibre reinforced concrete[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [20] 李冬, 丁一宁. 钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析[J]. 振动与冲击, 2017, 36(2):123-128.

    LI Dong, DING Yining. Hybrid effect of steel rebar and polypropylene fiber on the impact resistance of concrete[J]. Journal of Vibration and Shock,2017,36(2):123-128(in Chinese).
    [21] ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading[J]. Materials & Design,2017,117:139-149.
    [22] GUPTA T, SHARMA R K, CHAUDHARY S. Impact resistance of concrete containing waste rubber fiber and silica fume[J]. International Journal of Impact Engineering,2015,83:76-87. doi: 10.1016/j.ijimpeng.2015.05.002
    [23] LI J J, NIU J G, WAN C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction and Building Materials,2016,118:27-35. doi: 10.1016/j.conbuildmat.2016.04.116
    [24] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6):1074-1081, 1103. doi: 10.3785/j.issn.1008-973X.2017.06.003

    OU Zumin, SUN Lu. Flxural fatigue-life reliability of frost-damaged concrete[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1074-1081, 1103(in Chinese). doi: 10.3785/j.issn.1008-973X.2017.06.003
    [25] 石小平, 姚祖康, 李华, 等. 水泥混凝土的弯曲疲劳特性[J]. 土木工程学报, 1990, 23(3):11-22.

    SHI Xiaoping, YAO Zukang, LI Hua, et al. Study on flexural fatigue behavior of cement concrete[J]. China Civil Engineering Journal,1990,23(3):11-22(in Chinese).
    [26] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Microelectron,1951,28(4):613-617.
    [27] SAGHAFI A, MIRHABILI A R, YARI G H. Improved linear regression method for estimating Weibull parameters[J]. Theoretical & Applied Fracture Mechanics,2009,52(3):180-182.
    [28] RAHMANI T, KIANI B, SHEKARCHI M, et al. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test[J]. Construction & Building Materials,2012,37:360-369.
    [29] 赵庆新, 董进秋, 潘慧敏, 等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报, 2010, 27(6):120-125.

    ZHAO Qingxin, DONG Jinqiu, PAN Huimin, et al. Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2010,27(6):120-125(in Chinese).
    [30] LI B, XU L H, SHI Y C, et al. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete[J]. Construction and Building Materials,2018,181:474-486. doi: 10.1016/j.conbuildmat.2018.06.065
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  238
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 录用日期:  2019-11-04
  • 网络出版日期:  2019-11-06
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回