留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用

何柏灵 葛东云

何柏灵, 葛东云. 复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用[J]. 复合材料学报, 2020, 37(8): 2065-2075 doi:  10.13801/j.cnki.fhclxb.20191030.004
引用本文: 何柏灵, 葛东云. 复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用[J]. 复合材料学报, 2020, 37(8): 2065-2075 doi:  10.13801/j.cnki.fhclxb.20191030.004
Boling HE, Dongyun GE. Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004
Citation: Boling HE, Dongyun GE. Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004

复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用

doi: 10.13801/j.cnki.fhclxb.20191030.004
基金项目: 广西高校中青年教师基础能力提升项目(2019 KY0365);广西科技基地和人才专项(桂科AD19110150);机械结构强度与振动国家重点实验室开放课题(SV2019-KF-12)
详细信息
    通讯作者:

    葛东云,博士,副教授,博士生导师,研究方向为复合材料力学 E-mail:gedy@tsinghua.edu.cn

  • 中图分类号: TB330.1; V214.8

Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints

  • 摘要: 提出考虑层合板面内(纤维和基体失效)和层间失效的复合材料连续损伤力学模型,对螺栓接头的渐进失效行为进行预测。基于Tsai-Wu强度准则,发展可以判定复合材料面内和层间失效的强度准则。采用幂指数衰减材料退化模型模拟复合材料的损伤扩展过程。建立连续损伤力学模型用以研究0°铺层比例和螺栓直径对复合材料螺栓接头挤压性能的影响,预测结果与实验结果吻合。结果表明:0°铺层比例过高,接头发生剪切破坏,降低连接结构承载能力;增大螺栓直径,层合板损伤受到抑制,可提高复合材料螺栓接头的挤压强度。
  • 图  1  基于连续损伤力学的复合材料螺栓接头渐进失效分析流程

    Figure  1.  Progressive damage analysis process of composite bolted joints based on continuum damage mechanics

    图  2  T800级碳纤维增强聚合物复合材料螺栓接头的尺寸

    Figure  2.  Geometry of T800 carbon fiber reinforced polymer composite bolted joint

    图  3  1/4复合材料-钛合金双剪单钉螺栓接头的数值模型

    Figure  3.  Numerical model of 1/4 composite-titanium double shear single bolted joints

    图  4  网格收敛性分析(接头C-12.8)

    Figure  4.  Mesh convergence analysis (Joint configuration C-12.8)

    图  5  接头C-12.8的挤压应力-应变曲线

    Figure  5.  Bearing stress-strain curves of joint configuration C-12.8

    图  6  接头C-12.8的初始损伤变量-挤压应变曲线

    Figure  6.  Initial damage index-bearing strain curves of joint configuration C-12.8

    图  7  不同铺层比例接头的应力-应变曲线

    Figure  7.  Bearing stress-strain curves of joint configurations with different ply ratios

    图  8  接头A-12.8的挤压失效机制

    Figure  8.  Bearing failure mechanism of joint configuration A-12.8

    图  9  接头C-12.8的剪切失效机制

    Figure  9.  Shear-out failure mechanism of joint configuration C-12.8

    图  10  不同螺栓直径接头的应力-应变曲线

    Figure  10.  Bearing stress-strain curves of joint configurations with different bolt diameters

    图  11  不同螺栓直径接头的连接孔边纤维损伤分布(挤压应力为600 MPa)

    Figure  11.  Fibre damage distribution around the fastener hole of joint configurations with different bolt diameters (Bearing stress is 600 MPa)

    表  1  T800级碳纤维增强聚合物复合材料层合板铺层比例和顺序

    Table  1.   Ply ratios and sequences of T800 carbon fiber reinforced polymer composite laminate

    CodePly ratio/
    %[0°/±45°/90°]
    Ply sequence
    A (30/60/10) [45°/0°/−45°/0°/45°/90°/−45°/0°/45°/−45°]3s
    B (50/40/10) [45°/0°/−45°/0°/90°/0°/45°/0°/−45°/0°]3s
    C (70/20/10) [45°/0°/0°/−45°/0°/0°/0°/90°/0°/0°]3s
    下载: 导出CSV

    表  2  T800级碳纤维增强聚合物复合材料力学性能[23]

    Table  2.   Mechanical properties of T800 carbon fiber reinforced polymer composite[23]

    Elastic constantValueStrengthValue
    E1/GPa 195 XT/MPa 3 071
    E2=E3/GPa 8.58 XC/MPa 1 747
    G12=G13/GPa 4.57 YT=ZT/MPa 88
    G23/GPa 2.9 YC=ZC/MPa 271
    ν12=ν13 0.33 S12=S13/MPa 143
    v23 0.48 S23/MPa 143
    Notes: Ei(i=1,2,3)—Elastic modulus in material principle directions; Gij(1≤i<j≤3)—Shear elastic modulus in material principle directions; νij(1≤i<j≤3)—Poison’s ratio in material principal directions; XT and XC—Tensile and compressive strength in fiber directions; YT and YC—Tensile and compressive strength normal to fiber directions; ZT and ZC—Tensile and compressive strength in interlaminar directions; S12 and S13—In-plane shear strength in material directions; S23—Interlaminar shear strength in material directions.
    下载: 导出CSV

    表  3  T800级碳纤维增强聚合物复合材料的断裂韧性[24]

    Table  3.   Fracture toughness of T800 carbon fiber reinforced polymer composite[24]

    Gf/(N·mm−1)Gn/(N·mm−1)Gs/(N·mm−1)
    106.3 0.28 0.79
    Notes: Gf—Fracture toughness in fiber direction; Gn—Transverse normal fracture toughness; Gs—Shear fracture toughness.
    下载: 导出CSV

    表  4  Ti-6Al-4V的弹塑性材料参数[25]

    Table  4.   Elasto-plastic properties of Ti-6Al-4V[25]

    PropertyValue
    E/GPa 110
    ν 0.29
    σy/MPa 950 1 034 1 103
    εp 0 0.002 0.1
    Notes: E—Young’s modulus; ν—Poison’s ratio; σy—Yield stress; εp—Yield strain.
    下载: 导出CSV

    表  5  T800级碳纤维增强聚合物复合材料螺栓接头的拉伸试验矩阵

    Table  5.   Tensile test matrix of T800 carbon fiber reinforced polymer composite bolted joints

    SpecimenPly ratio/%[0°/±45°/90°]Bolt diameter D/mm
    A-12.8 (30/60/10) 12.8
    B-12.8 (50/40/10) 12.8
    C-12.8 (70/20/10) 12.8
    A-9.53 (30/60/10) 9.5
    A-14.3 (30/60/10) 14.3
    下载: 导出CSV

    表  6  试验与数值结果比较(接头C-12.8)

    Table  6.   Comparison between experimental and numerical results (Joint configuration C-12.8)

    ModelUltimate bearing strength/MPa
    PredictionTestError/%
    This paper 967.3 935.3 3.4
    Linde model 1 007 935.3 7.7
    Hashin model 1 001 935.3 7.1
    下载: 导出CSV
  • [1] 赵丽滨, 山美娟, 彭雷, 等. 制造公差对复合材料螺栓连接结构强度分散性的影响研究[J]. 复合材料学报, 2015, 32(4):1092-1098.

    ZHAO L B, SHAN M J, PEI L, et al. Effect of manufacturing tolerance on the strength scatter of composite bolted joints[J]. Acta Materiae Compositae Sinica,2015,32(4):1092-1098(in Chinese).
    [2] LIU P, CHENG X Q, WANG S W, et al. Numerical analysis of bearing failure in countersunk composite joints using 3D explicit simulation method[J]. Composite Structures,2016,138:30-39. doi:  10.1016/j.compstruct.2015.11.058
    [3] XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints(Part I: Experimental investigation)[J]. Composite Science Technology,2005,65:1022-1031. doi:  10.1016/j.compscitech.2005.02.011
    [4] XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints(Part II: modeling and simulation)[J]. Composite Science Technology,2005,65:1032-1043. doi:  10.1016/j.compscitech.2004.12.049
    [5] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London. Series A,1948,193(1033):281-297.
    [6] HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials,1967,1(2):200-206. doi:  10.1177/002199836700100210
    [7] TSAI S W, WU E. A general theory of strength for anistropic materials[J]. Journal of Composite Materials,1971,5(1):58-80. doi:  10.1177/002199837100500106
    [8] HASHIN Z. Failure criteria for unidirectional fibre compo-sites[J]. Journal of Applied Mechanics,1980,47:329-334. doi:  10.1115/1.3153664
    [9] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7:448-464. doi:  10.1177/002199837300700404
    [10] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12-13):1633-1662. doi:  10.1016/S0266-3538(01)00208-1
    [11] 吴义韬, 姚卫星, 吴富强, 等. 基于应变能耗散的复合材料层合板面内缺口强度分析CDM模型[J]. 复合材料学报, 2014, 31(4):1013-1021.

    WU Y T, YAO W X, WU F Q, et al. CDM model for analyzing intralaminar strength of notched composite laminates based on the dissipation of strain energy[J]. Acta Materiae Compositae Sinica,2014,31(4):1013-1021(in Chinese).
    [12] ZHOU Y H, YAZDANI-NEZHAD H, MCCARTHY M A, et al. A study of intra-laminar damage in double-lap, multi-bolt, composite joints with variable clearance suing continuum damage mechanics[J]. Composite Structures,2014,116:441-452. doi:  10.1016/j.compstruct.2014.05.051
    [13] 黄河源, 赵美英, 万小鹏, 等. 复合材料中厚板沉头连接结构强度与损伤失效[J]. 复合材料学报, 2017, 34(3):557-563.

    HUANG H Y, ZHAO M Y, WAN X P, et al. Strength and damage evolution of mid-thick composite laminates with countersunk bolt joints[J]. Acta Materiae Compositae Sinica,2017,34(3):557-563(in Chinese).
    [14] EGAN B, MCCARTHY M A, FRIZZELL R M, et al. Modelling bearing failure in countersunk composite joints under quasi-static loading using 3D explicit finite element analysis[J]. Composite Structures,2014,108:963-977. doi:  10.1016/j.compstruct.2013.10.033
    [15] TANG Y L, ZHOU Z G, PAN S D, et al. Mechanical property and failure mechanism of 3D carbon-carbon braided composites bolted joints under unidirectional tensile loading[J]. Materials and Design,2015,65:243-253. doi:  10.1016/j.matdes.2014.08.073
    [16] ZHAO L B, QIN T L, ZHANG J Y, et al. 3D gradual material degradation model for progressive damage analyses of unidirectional composite materials[J]. Mathematical Problems in Engineering,2015,145629:1-11.
    [17] RICCIO A, MARCIANO L. Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load: Part I-experimental studies[J]. Journal of Composite Materials,2005,39:2071-2090. doi:  10.1177/0021998305052026
    [18] CHANG F K, LESSARD L B. Damage tolerance of laminated composites containing an open hole and subject to compressive loadings: Part I-analysis[J]. Journal of Composite Materials,1991,25(1):2-43. doi:  10.1177/002199839102500101
    [19] DAVILA C G, CAMANHO P P, ROSE C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials,2005,39(4):323-345. doi:  10.1177/0021998305046452
    [20] ZOU Z, REID S R, LI S, et al. Application of a delamination model to laminated composite structures[J]. Composite Structures,2002,56:375-389. doi:  10.1016/S0263-8223(02)00021-1
    [21] LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73:221-228. doi:  10.1016/j.compstruct.2005.11.062
    [22] BENZEGAGH M L, KENANE M. Measurement of mix-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composite Science and Technology,1996,56(4):439-449. doi:  10.1016/0266-3538(96)00005-X
    [23] 何柏灵, 葛东云, 莫与明, 等. T800碳纤维增强复合材料双剪单钉连接的拉伸试验及强度估算[J]. 复合材料学报, 2016, 33(7):1540-1552.

    HE B L, GE D Y, MO Y M, et al. Tensile tests and strength estimation for double-lap single bolt joints in T800 carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1540-1552(in Chinese).
    [24] WANG L, ZHENG C X, LUO H Y. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures,2015,134:475-482. doi:  10.1016/j.compstruct.2015.08.107
    [25] MIL-HDBK-5H. Metallic materials and elements for aerospace vehicle structures[M]. USA: Department of Defense, 1998.
    [26] OLMEDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints[J]. Composite Structures,2012,94:2110-2117. doi:  10.1016/j.compstruct.2012.01.016
    [27] American Society for Testing and Materials International. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M—13[S]. West Conshohocken: ASTM International, 2013.
  • [1] 邓云飞, 曾宪智, 周翔, 李向前, 熊健.  复合材料褶皱夹芯结构研究进展, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200903.001
    [2] 周浪, 王涛.  石墨烯/功能聚合物复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190919.001
    [3] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [4] 乔雪涛, 王朋, 闫存富, 许华威, 张力斌, 贾克, 杨泽, 吴隆.  钢-聚丙烯纤维增强人造花岗岩复合材料的制备与性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191206.006
    [5] 高巧春, 张庆法, 任夏瑾, 卢文玉, 周亮, 蔡红珍.  造纸污泥/高密度聚乙烯复合材料的制备及性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191014.002
    [6] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [7] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [8] 丁春香, 潘明珠, 杨舒心, 梅长彤.  基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200122.001
    [9] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [10] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [11] 郎风超, 朱静, 李云芳, 潘俊臣, 姜爱峰, 杨诗婷, 邢永明.  SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190712.001
    [12] 万陶磊, 常俊杰, 曾雪峰, 李媛媛.  基于经验模态分解和相关系数对玻璃纤维增强聚合物复合材料板的损伤识别及扫查成像, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191031.003
    [13] 王春红, 鹿超, 贾瑞婷, 陆鑫, 左恒峰, 王瑞.  洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191226.002
    [14] 张庆法, 任夏瑾, 吴娟娟, 于文凡, 徐航, 蔡红珍.  活性炭/高密度聚乙烯复合材料的力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200224.001
    [15] 卢文玉, 蔡红珍, 于文凡, 徐航, 韩祥生.  枣核/低密度聚乙烯复合材料的力学性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200000.00000
    [16] 王遥, 曹东风, 胡海晓, 冀运东, 宋培豪, 李书欣.  单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力影响的实验研究, 复合材料学报.
    [17] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [18] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [19] 赵晟, 张继文.  一种基于复合材料剩余强度的衍生疲劳损伤模型, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191224.002
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报.
  • 加载中
图(11) / 表ll (6)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  38
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-10-24
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回