留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用

何柏灵 葛东云

何柏灵, 葛东云. 复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用[J]. 复合材料学报, 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004
引用本文: 何柏灵, 葛东云. 复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用[J]. 复合材料学报, 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004
HE Boling, GE Dongyun. Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004
Citation: HE Boling, GE Dongyun. Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2065-2075. doi: 10.13801/j.cnki.fhclxb.20191030.004

复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用

doi: 10.13801/j.cnki.fhclxb.20191030.004
基金项目: 广西高校中青年教师基础能力提升项目(2019 KY0365);广西科技基地和人才专项(桂科AD19110150);机械结构强度与振动国家重点实验室开放课题(SV2019-KF-12)
详细信息
    通讯作者:

    葛东云,博士,副教授,博士生导师,研究方向为复合材料力学 E-mail:gedy@tsinghua.edu.cn

  • 中图分类号: TB330.1; V214.8

Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints

  • 摘要: 提出考虑层合板面内(纤维和基体失效)和层间失效的复合材料连续损伤力学模型,对螺栓接头的渐进失效行为进行预测。基于Tsai-Wu强度准则,发展可以判定复合材料面内和层间失效的强度准则。采用幂指数衰减材料退化模型模拟复合材料的损伤扩展过程。建立连续损伤力学模型用以研究0°铺层比例和螺栓直径对复合材料螺栓接头挤压性能的影响,预测结果与实验结果吻合。结果表明:0°铺层比例过高,接头发生剪切破坏,降低连接结构承载能力;增大螺栓直径,层合板损伤受到抑制,可提高复合材料螺栓接头的挤压强度。

     

  • 图  1  基于连续损伤力学的复合材料螺栓接头渐进失效分析流程

    Figure  1.  Progressive damage analysis process of composite bolted joints based on continuum damage mechanics

    图  2  T800级碳纤维增强聚合物复合材料螺栓接头的尺寸

    Figure  2.  Geometry of T800 carbon fiber reinforced polymer composite bolted joint

    图  3  1/4复合材料-钛合金双剪单钉螺栓接头的数值模型

    Figure  3.  Numerical model of 1/4 composite-titanium double shear single bolted joints

    图  4  网格收敛性分析(接头C-12.8)

    Figure  4.  Mesh convergence analysis (Joint configuration C-12.8)

    图  5  接头C-12.8的挤压应力-应变曲线

    Figure  5.  Bearing stress-strain curves of joint configuration C-12.8

    图  6  接头C-12.8的初始损伤变量-挤压应变曲线

    Figure  6.  Initial damage index-bearing strain curves of joint configuration C-12.8

    图  7  不同铺层比例接头的应力-应变曲线

    Figure  7.  Bearing stress-strain curves of joint configurations with different ply ratios

    图  8  接头A-12.8的挤压失效机制

    Figure  8.  Bearing failure mechanism of joint configuration A-12.8

    图  9  接头C-12.8的剪切失效机制

    Figure  9.  Shear-out failure mechanism of joint configuration C-12.8

    图  10  不同螺栓直径接头的应力-应变曲线

    Figure  10.  Bearing stress-strain curves of joint configurations with different bolt diameters

    图  11  不同螺栓直径接头的连接孔边纤维损伤分布(挤压应力为600 MPa)

    Figure  11.  Fibre damage distribution around the fastener hole of joint configurations with different bolt diameters (Bearing stress is 600 MPa)

    表  1  T800级碳纤维增强聚合物复合材料层合板铺层比例和顺序

    Table  1.   Ply ratios and sequences of T800 carbon fiber reinforced polymer composite laminate

    CodePly ratio/
    %[0°/±45°/90°]
    Ply sequence
    A (30/60/10) [45°/0°/−45°/0°/45°/90°/−45°/0°/45°/−45°]3s
    B (50/40/10) [45°/0°/−45°/0°/90°/0°/45°/0°/−45°/0°]3s
    C (70/20/10) [45°/0°/0°/−45°/0°/0°/0°/90°/0°/0°]3s
    下载: 导出CSV

    表  2  T800级碳纤维增强聚合物复合材料力学性能[23]

    Table  2.   Mechanical properties of T800 carbon fiber reinforced polymer composite[23]

    Elastic constantValueStrengthValue
    E1/GPa 195 XT/MPa 3 071
    E2=E3/GPa 8.58 XC/MPa 1 747
    G12=G13/GPa 4.57 YT=ZT/MPa 88
    G23/GPa 2.9 YC=ZC/MPa 271
    ν12=ν13 0.33 S12=S13/MPa 143
    v23 0.48 S23/MPa 143
    Notes: Ei(i=1,2,3)—Elastic modulus in material principle directions; Gij(1≤i<j≤3)—Shear elastic modulus in material principle directions; νij(1≤i<j≤3)—Poison’s ratio in material principal directions; XT and XC—Tensile and compressive strength in fiber directions; YT and YC—Tensile and compressive strength normal to fiber directions; ZT and ZC—Tensile and compressive strength in interlaminar directions; S12 and S13—In-plane shear strength in material directions; S23—Interlaminar shear strength in material directions.
    下载: 导出CSV

    表  3  T800级碳纤维增强聚合物复合材料的断裂韧性[24]

    Table  3.   Fracture toughness of T800 carbon fiber reinforced polymer composite[24]

    Gf/(N·mm−1)Gn/(N·mm−1)Gs/(N·mm−1)
    106.3 0.28 0.79
    Notes: Gf—Fracture toughness in fiber direction; Gn—Transverse normal fracture toughness; Gs—Shear fracture toughness.
    下载: 导出CSV

    表  4  Ti-6Al-4V的弹塑性材料参数[25]

    Table  4.   Elasto-plastic properties of Ti-6Al-4V[25]

    PropertyValue
    E/GPa 110
    ν 0.29
    σy/MPa 950 1 034 1 103
    εp 0 0.002 0.1
    Notes: E—Young’s modulus; ν—Poison’s ratio; σy—Yield stress; εp—Yield strain.
    下载: 导出CSV

    表  5  T800级碳纤维增强聚合物复合材料螺栓接头的拉伸试验矩阵

    Table  5.   Tensile test matrix of T800 carbon fiber reinforced polymer composite bolted joints

    SpecimenPly ratio/%[0°/±45°/90°]Bolt diameter D/mm
    A-12.8 (30/60/10) 12.8
    B-12.8 (50/40/10) 12.8
    C-12.8 (70/20/10) 12.8
    A-9.53 (30/60/10) 9.5
    A-14.3 (30/60/10) 14.3
    下载: 导出CSV

    表  6  试验与数值结果比较(接头C-12.8)

    Table  6.   Comparison between experimental and numerical results (Joint configuration C-12.8)

    ModelUltimate bearing strength/MPa
    PredictionTestError/%
    This paper 967.3 935.3 3.4
    Linde model 1 007 935.3 7.7
    Hashin model 1 001 935.3 7.1
    下载: 导出CSV
  • [1] 赵丽滨, 山美娟, 彭雷, 等. 制造公差对复合材料螺栓连接结构强度分散性的影响研究[J]. 复合材料学报, 2015, 32(4):1092-1098.

    ZHAO L B, SHAN M J, PEI L, et al. Effect of manufacturing tolerance on the strength scatter of composite bolted joints[J]. Acta Materiae Compositae Sinica,2015,32(4):1092-1098(in Chinese).
    [2] LIU P, CHENG X Q, WANG S W, et al. Numerical analysis of bearing failure in countersunk composite joints using 3D explicit simulation method[J]. Composite Structures,2016,138:30-39. doi: 10.1016/j.compstruct.2015.11.058
    [3] XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints(Part I: Experimental investigation)[J]. Composite Science Technology,2005,65:1022-1031. doi: 10.1016/j.compscitech.2005.02.011
    [4] XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints(Part II: modeling and simulation)[J]. Composite Science Technology,2005,65:1032-1043. doi: 10.1016/j.compscitech.2004.12.049
    [5] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London. Series A,1948,193(1033):281-297.
    [6] HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials,1967,1(2):200-206. doi: 10.1177/002199836700100210
    [7] TSAI S W, WU E. A general theory of strength for anistropic materials[J]. Journal of Composite Materials,1971,5(1):58-80. doi: 10.1177/002199837100500106
    [8] HASHIN Z. Failure criteria for unidirectional fibre compo-sites[J]. Journal of Applied Mechanics,1980,47:329-334. doi: 10.1115/1.3153664
    [9] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7:448-464. doi: 10.1177/002199837300700404
    [10] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12-13):1633-1662. doi: 10.1016/S0266-3538(01)00208-1
    [11] 吴义韬, 姚卫星, 吴富强, 等. 基于应变能耗散的复合材料层合板面内缺口强度分析CDM模型[J]. 复合材料学报, 2014, 31(4):1013-1021.

    WU Y T, YAO W X, WU F Q, et al. CDM model for analyzing intralaminar strength of notched composite laminates based on the dissipation of strain energy[J]. Acta Materiae Compositae Sinica,2014,31(4):1013-1021(in Chinese).
    [12] ZHOU Y H, YAZDANI-NEZHAD H, MCCARTHY M A, et al. A study of intra-laminar damage in double-lap, multi-bolt, composite joints with variable clearance suing continuum damage mechanics[J]. Composite Structures,2014,116:441-452. doi: 10.1016/j.compstruct.2014.05.051
    [13] 黄河源, 赵美英, 万小鹏, 等. 复合材料中厚板沉头连接结构强度与损伤失效[J]. 复合材料学报, 2017, 34(3):557-563.

    HUANG H Y, ZHAO M Y, WAN X P, et al. Strength and damage evolution of mid-thick composite laminates with countersunk bolt joints[J]. Acta Materiae Compositae Sinica,2017,34(3):557-563(in Chinese).
    [14] EGAN B, MCCARTHY M A, FRIZZELL R M, et al. Modelling bearing failure in countersunk composite joints under quasi-static loading using 3D explicit finite element analysis[J]. Composite Structures,2014,108:963-977. doi: 10.1016/j.compstruct.2013.10.033
    [15] TANG Y L, ZHOU Z G, PAN S D, et al. Mechanical property and failure mechanism of 3D carbon-carbon braided composites bolted joints under unidirectional tensile loading[J]. Materials and Design,2015,65:243-253. doi: 10.1016/j.matdes.2014.08.073
    [16] ZHAO L B, QIN T L, ZHANG J Y, et al. 3D gradual material degradation model for progressive damage analyses of unidirectional composite materials[J]. Mathematical Problems in Engineering,2015,145629:1-11.
    [17] RICCIO A, MARCIANO L. Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load: Part I-experimental studies[J]. Journal of Composite Materials,2005,39:2071-2090. doi: 10.1177/0021998305052026
    [18] CHANG F K, LESSARD L B. Damage tolerance of laminated composites containing an open hole and subject to compressive loadings: Part I-analysis[J]. Journal of Composite Materials,1991,25(1):2-43. doi: 10.1177/002199839102500101
    [19] DAVILA C G, CAMANHO P P, ROSE C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials,2005,39(4):323-345. doi: 10.1177/0021998305046452
    [20] ZOU Z, REID S R, LI S, et al. Application of a delamination model to laminated composite structures[J]. Composite Structures,2002,56:375-389. doi: 10.1016/S0263-8223(02)00021-1
    [21] LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73:221-228. doi: 10.1016/j.compstruct.2005.11.062
    [22] BENZEGAGH M L, KENANE M. Measurement of mix-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composite Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [23] 何柏灵, 葛东云, 莫与明, 等. T800碳纤维增强复合材料双剪单钉连接的拉伸试验及强度估算[J]. 复合材料学报, 2016, 33(7):1540-1552.

    HE B L, GE D Y, MO Y M, et al. Tensile tests and strength estimation for double-lap single bolt joints in T800 carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1540-1552(in Chinese).
    [24] WANG L, ZHENG C X, LUO H Y. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures,2015,134:475-482. doi: 10.1016/j.compstruct.2015.08.107
    [25] MIL-HDBK-5H. Metallic materials and elements for aerospace vehicle structures[M]. USA: Department of Defense, 1998.
    [26] OLMEDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints[J]. Composite Structures,2012,94:2110-2117. doi: 10.1016/j.compstruct.2012.01.016
    [27] American Society for Testing and Materials International. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M—13[S]. West Conshohocken: ASTM International, 2013.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  1609
  • HTML全文浏览量:  281
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-10-24
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回