留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能

丁梅杰 张旭东 魏智强 黄尚攀 姜金龙

丁梅杰, 张旭东, 魏智强, 等. MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能[J]. 复合材料学报, 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
引用本文: 丁梅杰, 张旭东, 魏智强, 等. MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能[J]. 复合材料学报, 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
DING Meijie, ZHANG Xudong, WEI Zhiqiang, et al. Optical properties of MnFe2O4/reduced graphene oxide nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
Citation: DING Meijie, ZHANG Xudong, WEI Zhiqiang, et al. Optical properties of MnFe2O4/reduced graphene oxide nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002

MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能

doi: 10.13801/j.cnki.fhclxb.20191030.002
基金项目: 国家自然科学基金(51261015);甘肃省自然科学基金(1308RJZA238);兰州理工大学红柳一流学科建设项目
详细信息
    通讯作者:

    魏智强,教授,博士生导师,研究方向为纳米材料 E-mail:zqwei7411@163.com

  • 中图分类号: TB34

Optical properties of MnFe2O4/reduced graphene oxide nanocomposites

  • 摘要: 由于纳米尺度的尖晶石结构金属氧化物独特的晶体结构和能带结构,使其具有广阔的应用前景。采用水热法合成了MnFe2O4复合还原氧化石墨烯(MnFe2O4/rGO)纳米复合材料,采用XRD、高分辨透射电子显微镜(HRTEM)、能量色散X射线光谱仪(EDX)、FTIR、XPS、拉曼光谱(Raman)、光致发光光谱(PL)和紫外-可见光谱漫反射(UV-vis DRS)对样品的晶体结构、形貌、元素分布、结合能和光学性能进行表征。结果表明,制备的MnFe2O/rGO复合材料为立方尖晶石结构,形貌呈不规则的椭球形,颗粒大小比较均匀。rGO表面所负载的MnFe2O4纳米粒子被石墨烯部分包裹,颗粒尺寸小,分散性好。MnFe2O4/rGO复合材料的电子-空穴对的再结合效率降低,其中石墨烯具有较多缺陷,无序程度较高,含氧基团被聚乙烯吡咯烷酮(PVP)部分还原,数量大大减少。MnFe2O4/rGO复合材料的带隙小于纯MnFe2O4带隙,发生了红移现象。

     

  • 图  1  氧化石墨烯(GO)、MnFe2O4和MnFe2O4/还原氧化石墨烯(rGO)复合材料的XRD图谱

    Figure  1.  XRD patterns of graphene oxide(GO), MnFe2O4 and MnFe2O4/reduced graphene oxide(rGO) composite

    图  2  纯MnFe2O4的HRTEM图像((a), (b))、选区电子衍射图像(c)和粒径分布(d)

    Figure  2.  HRTEM images((a), (b)), selected area electron diffraction image(c) and corresponding particle size distribution(d) of pure MnFe2O4

    图  3  rGO(a)和MnFe2O4/rGO复合材料(b)的HRTEM图像

    Figure  3.  HRTEM images of rGO(a) and MnFe2O4/rGO composite(b)

    图  4  MnFe2O4 (a)和MnFe2O4/rGO复合材料(b)的能量色散X射线(EDX)图谱

    Figure  4.  Energy dispersive X -ray (EDX) spectra of MnFe2O4(a) and MnFe2O4/RGO composite(b)

    图  5  GO、MnFe2O4和MnFe2O4/rGO复合材料的FTIR图谱

    Figure  5.  FTIR spectra of GO, MnFe2O4 and MnFe2O4/rGO composite

    图  6  MnFe2O4/rGO复合材料的拉曼图谱

    Figure  6.  Raman spectrum of MnFe2O4/rGO composite

    图  7  MnFe2O4/rGO复合材料的XPS图谱

    Figure  7.  XPS spectra of MnFe2O4/rGO composite

    图  8  MnFe2O4和MnFe2O4/rGO复合材料的光致发光(PL)图谱

    Figure  8.  Photoluminescence(PL) spectra of MnFe2O4 and MnFe2O4/rGO composite

    图  9  MnFe2O4和MnFe2O4/rGO复合材料的紫外-可见漫反射图谱(a)和 (αhν)2-hν曲线(b)

    hν—photon energy; α—Absorption coefficient

    Figure  9.  UV-vis diffuse reflection spectroscopy(a) and (αhν)2-hν curves(b) of MnFe2O4 and MnFe2O4/rGO composite

  • [1] SICKAFUS K E, WILLS J M, GRIMES N W. Structure of spinel[J]. Journal of the American Ceramic Society,2010,82(12):3279-3292.
    [2] ZHU X L, WEI Z Q, ZHAO W H, et al. Microstructure and electrochemical properties of ZnMn2O4 nanopowder synthesized using different surfactants[J]. Journal of Electronic Materials,2018,47(11):6428-6436. doi: 10.1007/s11664-018-6544-7
    [3] ZHU X L, WEI Z Q, ZHAO W H, et al. Preparation and characterization of Zn1-xNixFe2O4 nanoparticles with spinel structure synthesized by hydrothermal method[J]. Current Nanoscience,2018,14(6):474-480. doi: 10.2174/1573413714666180528074117
    [4] ZHEN L, HE K, XU C Y, et al. Synthesis and characterization of single-crystalline MnFe2O4 nanorods via a surfactant-free hydrothermal route[J]. Journal of Magnetism & Magnetic Materials,2008,320(21):2672-2675.
    [5] LIN X M, LV X, WANG L M, et al. Preparation and characterization of MnFe2O4 in the solvothermal process: Their magnetism and electrochemical properties[J]. Materials Research Bulletin,2013,48(7):2511-2516. doi: 10.1016/j.materresbull.2013.03.010
    [6] PHUMYING S, LABUAYAI S, SWATSITANG E, et al. Nanocrystalline spinel ferrite (MFe2O4, M=Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route[J]. Materials Research Bulletin,2013,48(6):2060-2065. doi: 10.1016/j.materresbull.2013.02.042
    [7] HOU X Y, FENG J, REN Y M, et al. Synthesis and adsorption properties of spongelike porous MnFe2O4[J]. Colloids and Surfaces A: Physicochem. Engineering Aspects,2010,363(1-3):1-7. doi: 10.1016/j.colsurfa.2010.03.016
    [8] GAUTAM S, SHANDILYA P, PRIYA B, et al. Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization[J]. Separation and Purification Technology,2017,172:498-511. doi: 10.1016/j.seppur.2016.09.006
    [9] XU H Y, LI B, SHI T N, et al. Nanoparticles of magnetite anchored onto few-layer graphene: A highly efficient Fenton-like nanocomposite catalyst[J]. Journal of Colloid and Interface Science,2018,532:161-170. doi: 10.1016/j.jcis.2018.07.128
    [10] SUN Z M, YAO G Y, LIU M Y, et al. In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,71:501-509.
    [11] WANG X Y, WANG A Q, MA J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites[J]. Journal of Hazardous Materials,2017,336:81-92.
    [12] MEENA S, RENUKA L, ANANTHARAJUB K S, et al. Optical, electrochemical and photocatalytic properties of sunlight driven Cu doped manganese ferrite synthesized by solution combustion synthesis[J]. Materialstoday: Proceedings,2017,4(11):11773-11781. doi: 10.1016/j.matpr.2017.09.094
    [13] NAGARAJAN V, THAYUMANAVAN A. Spray deposited MnFe2O4 thin films for detection of ethanol and acetone vapors[J]. Applied Surface Science,2018,428:748-756. doi: 10.1016/j.apsusc.2017.09.156
    [14] WANG Z M, MA H, ZHANG C, et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe2O4 materials: Performance and mechanism[J]. Chemical Engineering Journal,2017,354:42-52.
    [15] LIANG C, LIU Y H, KUN L, et al. Heterogeneous photo-Fenton degradation of organic pollutants with amorphous Fe-Zn-oxide/hydrochar under visible light irradiation[J]. Separation and Purification Technology,2017,188:105-111. doi: 10.1016/j.seppur.2017.07.027
    [16] SHARMA R, BANSAL S, SINGHALSONAL. Tailoring the photo-Fenton activity of spinelferrites (MFe2O4) by incorporating different cations (M=Cu, Zn Ni and Co) in the structure[J]. RSC Advances,2015,5(8):6006-6018. doi: 10.1039/C4RA13692F
    [17] TAKAMURA H, SUGAI H, WATANABE M, et al. Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites[J]. Journal of Electroceramics,2006,17(2-4):741-748. doi: 10.1007/s10832-006-7776-0
    [18] YAMAGUCHI N U, BERGAMASCO R, HAMOUDI S. Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water[J]. Chemical Engineering Journal,2016,295:391-402. doi: 10.1016/j.cej.2016.03.051
    [19] TRAN V T, VU D T. Influence of temperature on structure, morphology, and magnetic property of graphene-MnFe2O4 nanocomposites synthesized by a combined hydrothermal co-precipitation method[J]. Applied Physics A,2018,124:675.
    [20] BAGHERZADEH M, KAVEH R. New magnetically recyclable reduced graphene oxide rGO/MFe2O4 (M=Ca, Mg)/Ag3PO4 nanocomposites with remarkably enhanced visible-light photocatalytic activity and stability[J]. Photochemistry and Photobiology,2018,94(6):1210-1224.
    [21] GUO Y L, ZHANG L L, LIU X Y, et al. Synthesis of magnetic core-shell carbon dots@MFe2O4 (M=Mn, Zn and Cu) hybrid materials and their catalytic properties[J]. Journal Materials Chemistry A,2016,4(11):4044-4055.
    [22] SHOJAAT R, SAADAJOO N, KARIMI A, et al. Simultaneous adsorption-degradation of organic dyes using MnFe2O4/calcium alginate nano-composites coupled with GOx and Laccase[J]. Journal of Environmental Chemical Engineering,2016:S2213343716300732.
    [23] JIANG J L, HE X X, DU J F, et al. Insitu fabrication of graphene-nickel matrix composites[J]. Materials Letters,2018,220:178-181. doi: 10.1016/j.matlet.2018.03.039
    [24] BI T T, FANG H Q, JIANG J L, et al. Enhance supercapacitive performance of MnO2/3D carbon nanotubes-graphene as a binder-free electrode[J]. Journal of Alloys and Compounds,2019,787:759-766. doi: 10.1016/j.jallcom.2019.02.117
    [25] ISHANI M, DEKAMIN M G, ALIREZVANI Z. Superparamagnetic silica core-shell hybrid attached to grapheme oxide as a promising recoverable catalyst for expeditious synthesis of TMS-protected cyanohydrins[J]. Journal of Colloid and Interface Science,2018,521:232-241. doi: 10.1016/j.jcis.2018.02.060
    [26] LUO P H, GUAN X F, YU Y L, et al. New insight into electrooxidation of graphene into graphene quantum dots[J]. Chemical Physics Letters,2017,690:129-132. doi: 10.1016/j.cplett.2017.10.047
    [27] CUEVAS M S, OLLER I, AGÜERA A, et al. Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment[J]. Chemical Engineering Journal,2017,318:161-170. doi: 10.1016/j.cej.2016.06.031
    [28] WANG P J, WANG L Q, SUN Q, et al. Preparation and performance of Fe3O4@hydrophilicgraphene composites with excellent photo-Fenton activity for photocatalysis[J]. Materials Letters,2016,183:61-64. doi: 10.1016/j.matlet.2016.07.080
    [29] MALIYEKKAL S M, SREEPRASAD T S, KRISHNAN D, et al. Graphene: A reusable substrate for unprecedented adsorption of pesticides[J]. Small,2013,9(2):273-283. doi: 10.1002/smll.201201125
    [30] XIONG P, HU C Y, FAN Y, et al. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance[J]. Journal of Power Sources,2014,266:384-392. doi: 10.1016/j.jpowsour.2014.05.048
    [31] YAN Y X, YANG H, ZHAO X X, et al. Enhanced photocatalytic activity of surface disorder-engineered CaTiO3[J]. Materials Research Bulletin,2018,105:286-290. doi: 10.1016/j.materresbull.2018.05.008
    [32] ZHAO W H, WEI Z Q, WU X J, et al. Cr doped SnS2 nanoflowers: Preparation, characterization and photocatalytic decolorization[J]. Materials Science in Semiconductor Processing,2018,88(4):173-180.
  • 加载中
图(9)
计量
  • 文章访问数:  1695
  • HTML全文浏览量:  257
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 录用日期:  2019-09-24
  • 网络出版日期:  2019-10-30
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回