留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双马来酰亚胺工艺改性及性能

周浩然 荆佳奇 王德志 范旭鹏 袁镇 赵立伟

周浩然, 荆佳奇, 王德志, 等. 双马来酰亚胺工艺改性及性能[J]. 复合材料学报, 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003
引用本文: 周浩然, 荆佳奇, 王德志, 等. 双马来酰亚胺工艺改性及性能[J]. 复合材料学报, 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003
ZHOU Haoran, JING Jiaqi, WANG Dezhi, et al. Process modification and properties analysis of bismaleimide[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003
Citation: ZHOU Haoran, JING Jiaqi, WANG Dezhi, et al. Process modification and properties analysis of bismaleimide[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1278-1284. doi: 10.13801/j.cnki.fhclxb.20191021.003

双马来酰亚胺工艺改性及性能

doi: 10.13801/j.cnki.fhclxb.20191021.003
基金项目: 黑龙江省自然科学基金(JC2017015);国家自然科学基金(51677045)
详细信息
    通讯作者:

    王德志,博士,研究员,硕士生导师,研究方向为高分子胶黏剂和基体树脂 E-mail:jim603@163.com

  • 中图分类号: TQ323.7

Process modification and properties analysis of bismaleimide

  • 摘要: 采用脂肪族双马来酰亚胺(HMDA-BMI)对4,4’-二苯甲烷型双马来酰亚胺(BDM)进行工艺改性,得到了一种低黏度、流动性好的基体树脂。当HMDA-BMI与BDM的摩尔比为1: 1时,黏度-温度曲线表明改性体系黏度可降低至0.50 Pa·s左右,低黏度平台的温度区间为85~175℃之间;黏度-时间曲线表明改性体系合适的充模温度为130~145℃,获得的改性基体树脂适合RTM成型工艺;通过DSC曲线确定了改性基体树脂固化工艺为160℃×2 h+180℃×2 h+200℃×2 h+230℃×4 h;FTIR表明改性体系按照此工艺可以固化完全;DMA曲线和TG曲线分析结果表明改性体系的耐热性基本保持不变;共聚改性体系的拉伸强度和弯曲强度分别为80.1 MPa和116 MPa。

     

  • 图  1  4,4’-二苯甲烷型双马来酰亚胺(BDM)、脂肪族双马来酰亚胺(HMDA-BMI)和双烯丙基双酚A(DP)分子结构式

    Figure  1.  Molecular structures of 4,4’-bismaleimide diphenylmethyene (BDM), aliphatic bismaleimide(HMDA-BMI) and diallyl bisphenol A(DP)

    图  2  改性共聚体系的黏度-温度曲线和黏度-时间曲线

    Figure  2.  Viscosity-temperature curves and viscosity-time curves of the modified blend systems

    图  3  DP-BDM、HMDA-BMI-DP-BDM和DP-HMDA-BMI改性共聚体系的DSC曲线

    Figure  3.  DSC curves of DP-BDM, HMDA-BMI-DP-BDM and DP-HMDA-BMI blend systems

    图  4  HMDA-BMI-DP-BDM 改性共聚体系的Ti-βTp-βTf-β线性拟合

    Figure  4.  Linear fitting of Ti-β, Tp-β and Tf-β of HMDA-BMI-DP-BDM blend system

    图  5  HMDA-BMI-DP-BDM共聚体系固化前后的FTIR图谱

    Figure  5.  FTIR spectra before and after curing of HMDA-BMI-DP-BDM copolymerization system

    图  6  不同共聚体系的TG、DTG和DMA曲线

    Figure  6.  TG, DTG and DMA curves of different copolymerizaion system

    图  7  不同共聚体系的拉伸强度、拉伸模量及弯曲强度和弯曲模量

    Figure  7.  Tensile strength, tensile modulus and bending strength, bending modulus of different copolymerization systems

    表  1  不同共聚体系摩尔比

    Table  1.   Mole ratios of different copolymerization systems

    Cololymerization
    system
    BDM/molHMDA-BMI/molDP/mol
    DP-BDM 1 0 0.87
    HMDA-BMI-DP-BDM 0.5 0.5 0.87
    DP-HMDA-BMI 0 1 0.87
    下载: 导出CSV

    表  2  HMDA-BMI-DP-BDM 体系不同升温速率下特征峰温度

    Table  2.   Characteristic peak temperatures at different heating rates of HMDA-BMI-DP-BDM system

    β/(℃·min−1)Ti/℃Tp/℃Tf/℃
    5 214 248 286
    10 226 262 300
    15 235 274 311
    20 247 284 328
    Notes: β—Temperature rate; Ti—Onset temperature; Tp—Peak temperature; Tf—End temperature.
    下载: 导出CSV
  • [1] 梁国正, 顾媛娟. 双马来酰亚胺树脂[M]. 北京: 化学工业出版社, 1997: 3.

    LIANG G Z, GU Y J. Bismaleimide resin[M]. Beijing: Chemistry Industry Press, 1997: 3(in Chinese).
    [2] GUO Ying, CHEN Fenghua, HAN Yue, et al. High performance fluorinated bismaleimide-triazine resin with excellent dielectric properties[J]. Journal of Polymer Research,2018,25(2):27-31. doi: 10.1007/s10965-017-1407-0
    [3] GUO Ying, HAN Yue, LIU Feng, et al. Fluorinated bismaleimide resin with good processability, high toughness, and outstanding dielectric properties[J]. Journal of Applied Polymer Science,2015,132(46):42791.
    [4] 陈宇飞, 郭红缘, 李志超, 等. 聚醚砜/双马来酰亚胺-环氧树脂复合材料的微观结构与性能[J]. 复合材料学报, 2017, 34(5):939-944.

    CHEN Yufei, GUO Hongyuan, LI Zhichao, et al. Micro-structure and properties of polyether sulfone/bismaleimide-epoxy composite[J]. Acta Materiae Compositae Sinica,2017,34(5):939-944(in Chinese).
    [5] HABBI D, MARVI O. Montmorillonite KSF and momtmorillonite K-10 clays as efficien catalysts for the solventless synthesis of bismaleimides and bisphthalimides using microwave irradiation[J]. Arkivoc,2006,8:8-15.
    [6] SAVA M. Bismaleimides and biscitraconimides: Synthesis and properties[J]. Journal of Applied Polymer Science,2004,91:3806-3812. doi: 10.1002/app.13548
    [7] HAN Yue, ZHANG Xiaohua, YU Xueping, et al. Bio-inspired aggregationcontrol of carbon nanotubes for ultra-strong composites[J]. Scientific Reports,2015,5:11533. doi: 10.1038/srep11533
    [8] OZAWA Y. Thermosetting resins composed of l-lysine methyl ester and bismaleimide[J]. Journal of Applied Polymer Science,2014,131(12):40379.
    [9] TAKEICHI T, SAITO Y. High-performance polymer alloys of polybenaoxazine and bismaleimide[J]. Polymer,2008,49(5):1173-1179. doi: 10.1016/j.polymer.2008.01.041
    [10] WU G L, KOU K C, ZHOU L H, et al. Preparation and characterization of novel dicyanate/benzoxazine/bismaleimide copolymer[J]. Thermochimica Acta,2013,559:86-91. doi: 10.1016/j.tca.2013.02.030
    [11] WANG Y Q, KOU K C, WU G L, et al. Study on synthesis of novel benzoxazine resin and its modification of CE/BMI[J]. Engineering Plastics Application,2013,41(10):22-25.
    [12] 王德志, 王鑫, 刘立柱, 等. 双马来酰亚胺共聚改性及性能[J]. 复合材料学报, 2017, 34(5):1088-1094.

    WANG Dezhi, WANG Xin, LIU Lizhu, et al. Study on the copolymerization and properties of bismaleimide systems[J]. Acta Materiae Compositae Sinica,2017,34(5):1088-1094(in Chinese).
    [13] BOEY F Y C, SONG X L, YUE C Y, et al. Modeling the curing kinetics for a modified bismaleimide resin[J]. Journal of Polymer Science Part A: Polytmer Chemistry,2000,38(5):907-913. doi: 10.1002/(SICI)1099-0518(20000301)38:5<907::AID-POLA15>3.0.CO;2-F
    [14] LIU X Y, ZHAN G Z, HAN Z W, et al. Phase moephology and mechanical properties of a poly(ether sulfone)-modified bismaleimide resin[J]. Journal of Applied Polymer Science,2007,106(1):77-83. doi: 10.1002/app.26493
    [15] HSIAO S H, CHEN C F. Syntheses and thermal properties of ether-containing bismaleimide and their cured resins[J]. Journal of Polymer Research,1996,3(1):31-37. doi: 10.1007/BF01493378
    [16] ZHOU J T, YAO Z J, ZHEN W J, et al. Dielectric and thermal performances of the graphene/bismaleimide/2,2’-diallylbisphenol a composite[J]. Materials Letters,2014,124:155-157. doi: 10.1016/j.matlet.2014.03.074
    [17] WANG X, JIANG Q, XU W Z, et al. Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites[J]. Carbon,2013,53:145-152. doi: 10.1016/j.carbon.2012.10.041
    [18] 徐佩弦. 高聚物流变学及应用[M]. 北京: 化学工业出版社, 2003: 13-30.

    XU P X. Rheology of polymer and application[M]. Beijing: Chemical Industry Press, 2003: 13-30(in Chinese).
    [19] 石凤, 段跃新, 梁志勇, 等. RTM专用双马来酰亚胺树脂体系化学流变特性[J]. 复合材料学报, 2006(1):56-62. doi: 10.3321/j.issn:1000-3851.2006.01.009

    SHI Feng, DUAN Yuexin, LIANG Zhiyong, et al. Rheological behavior of a bismaleimide resin system for RTM process[J]. Acta Materiae Compositae Sinica,2006(1):56-62(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.01.009
    [20] 王永贵, 梁宪珠, 薛向晨, 等. 热压罐工艺的传热分析和框架式模具温度场分布[J]. 航空制造技术, 2008(22):80-83, 87. doi: 10.3969/j.issn.1671-833X.2008.22.016

    WANG Yonggui, LIANG Xianzhu, XUE Xiangchen, et al. Analysis of heat transfer and temperature field distribution on frame tooling in autoclave process[J]. Aeronautical Manufacturing Technology,2008(22):80-83, 87(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.22.016
    [21] CHAUDHARI M, GALVIN T, KING J, et al. Characterzation of bismaleimide system, xu292[J]. SAMPE Journal,1985,11(5):17-21.
    [22] 金保宏, 王柏臣, 陈平, 等. RTM用BMI树脂的活性稀释剂研究[J]. 玻璃钢/复合材料, 2011(1):36-39. doi: 10.3969/j.issn.1003-0999.2011.01.009

    JIN Baohong, WANG Bochen, CHEN Ping, et al. Study on reactive diluent of bmi resin for resin trensfermolding[J]. Fiber Reinforced Plastics/Composites,2011(1):36-39(in Chinese). doi: 10.3969/j.issn.1003-0999.2011.01.009
    [23] 赵卫生, 孙超明, 王文晶, 等. RTM用乙烯基酯树脂化学流变性研究[J]. 玻璃钢/复合材料, 2014(8):97-100. doi: 10.3969/j.issn.1003-0999.2014.08.019

    ZHAO Weisheng, SUN Chaoming, WANG Wenjing, et al. Study on chemical rheological properties of rtm with vinyl ester resin[J]. Fiber Reinforced Plastics/Composites,2014(8):97-100(in Chinese). doi: 10.3969/j.issn.1003-0999.2014.08.019
    [24] 许亚洪, 陈萍. RTM复合材料结构件用BMI树脂基体6421体系的研究[J]. 航空制造工程, 1998(6):6-7.

    XU Yahong, CHEN Ping. Study on bmi resin matrix 6421 system for rtm composite structural parts[J]. Aeronautical Manufacturing Engineering,1998(6):6-7(in Chinese).
    [25] 许亚洪, 秦明, 李小刚, 等. 6421双马来酰亚胺树脂的反应流变性及树脂传递模塑成型工艺研究[J]. 材料工程, 2002(12):35, 39-40. doi: 10.3969/j.issn.1001-4381.2002.12.021

    XU Yahong, QIN Ming, LI Xiaogang, et al. Study on reaction rheological and resin transfer molding process of 6421 bismaleimide resin[J]. Journal of Materials Engineering,2002(12):35, 39-40(in Chinese). doi: 10.3969/j.issn.1001-4381.2002.12.021
    [26] 柴红梅, 王雷, 吕金燕, 等. RTM用高性能环氧树脂体系研究[J]. 玻璃钢/复合材料, 2009(1):28-30. doi: 10.3969/j.issn.1003-0999.2009.01.007

    CHAI Hongmei, WANG Lei, LV Jinyan, et al. Research on high performance epoxy resin system for RTM[J]. Fiber Reinforced Plastics/Composites,2009(1):28-30(in Chinese). doi: 10.3969/j.issn.1003-0999.2009.01.007
    [27] 中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. Test methods for properties of resin casting body: GB/2567—2008[S]. Beijing: Standard Press of China, 2008(in Chinese).
    [28] YAN H X, NING R C, LIANG G Z, et al. The effect of silane coupling agent on the sliding wear behavior of nanoment ZrO2/bismalemide composites[J]. Journal of Materials Science,2007,42(3):958-965. doi: 10.1007/s10853-006-0008-9
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  242
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 录用日期:  2019-09-10
  • 网络出版日期:  2019-10-30
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回