留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测

栾建泽 那景新 谭伟 慕文龙 秦国锋

栾建泽, 那景新, 谭伟, 等. 服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测[J]. 复合材料学报, 2020, 37(8): 1884-1893 doi:  10.13801/j.cnki.fhclxb.20191014.001
引用本文: 栾建泽, 那景新, 谭伟, 等. 服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测[J]. 复合材料学报, 2020, 37(8): 1884-1893 doi:  10.13801/j.cnki.fhclxb.20191014.001
Jianze LUAN, Jingxin NA, Wei TAN, Wenlong MU, Guofeng QIN. Effect of service low-temperature aging on mechanical properties of aluminum alloy-basalt fiber reinforced polymer composite bonding joints and failure prediction[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1884-1893. doi: 10.13801/j.cnki.fhclxb.20191014.001
Citation: Jianze LUAN, Jingxin NA, Wei TAN, Wenlong MU, Guofeng QIN. Effect of service low-temperature aging on mechanical properties of aluminum alloy-basalt fiber reinforced polymer composite bonding joints and failure prediction[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1884-1893. doi: 10.13801/j.cnki.fhclxb.20191014.001

服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测

doi: 10.13801/j.cnki.fhclxb.20191014.001
基金项目: 国家自然科学基金(51775230);吉林大学研究生创新研究计划项目(101832018C198)
详细信息
    通讯作者:

    那景新,教授,博士生导师,研究方向为车身轻量化及新材料连接技术 E-mail:najingxin@jlu.edu.cn

  • 中图分类号: U463.82

Effect of service low-temperature aging on mechanical properties of aluminum alloy-basalt fiber reinforced polymer composite bonding joints and failure prediction

  • 摘要: 为了给铝合金-玄武岩纤维增强树脂(BFRP)复合材料粘接结构在汽车工业中的应用提供参考和指导,加工了铝合金-BFRP复合材料粘接接头。结合汽车服役中的温度区间,选取−10℃和−40℃的低温老化环境,对接头进行0、10、20、30天的老化。对老化后的粘接接头进行准静态拉伸试验和剪切试验,得到不同老化时间下铝合金-BFRP粘接接头的准静态失效强度。结合DSC和FTIR分析低温老化对BFRP复合材料的影响,并对粘接接头的失效断面进行宏观分析和SEM分析。结果表明:在低温老化环境中,胶粘剂与BFRP复合材料的化学性质受低温老化作用影响不大,BFRP中的官能团与玻璃化转变温度(Tg)没有发生明显的变化,接头的失效强度和失效模式主要受胶粘剂与粘接基材的热应力影响。对于拉伸接头,随着低温老化时间的增加,BFRP复合材料纤维与树脂基体间的结合力降低,铝合金-BFRP复合材料接头的失效断面中纤维撕裂的比例逐渐减少,拉伸接头失效强度逐渐下降。老化后剪切接头仍为内聚失效,BFRP复合材料的低温老化对铝合金-BFRP复合材料剪切接头的失效强度几乎没有影响,剪切接头失效强度的下降主要是胶粘剂与粘接基材热膨胀系数不一致引起的热应力的影响。采用二次应力准则公式对−10℃和−40℃低温环境下,拉应力、剪应力值随老化时间的变化规律进行了拟合,在此失效准则的基础上,根据响应面原理,建立接头失效强度随老化时间变化的三维曲面,为粘接技术在车身结构中的工程应用提供参考。
  • 图  1  铝合金-玄武岩纤维增强树脂(BFRP)复合材料粘接接头几何尺寸

    Figure  1.  Geometry dimensions of the aluminum alloy-basalt fiber reinforced polymer(BFRP) composite adhesive joints

    图  2  粘接夹具

    Figure  2.  Work fixture

    图  3  低温环境箱

    Figure  3.  Cryogenic chamber

    图  4  JSM-IT500A扫描电子显微镜

    Figure  4.  JSM-IT500A InTouchScopeTM scanning electron microscope

    图  5  BFRP的玻璃化转变温度Tg

    Figure  5.  Glass conversion temperature Tg of BFRP

    图  6  BFRP的官能团

    Figure  6.  Functional groups of BFRP

    图  7  铝合金-BFRP复合材料粘接接头失效强度随老化时间变化(–10 ℃)

    Figure  7.  Failure strength of aluminum alloy-BFRP composite adhesive joint changing with aging time(–10 ℃)

    图  8  铝合金-BFRP复合材料粘接接头失效强度随老化时间变化(–40 ℃)

    Figure  8.  Failure strength of aluminum alloy-BFRP composite adhesive joint changing with aging time(–40 ℃)

    图  9  铝合金-BFRP复合材料粘接接头拉应力破坏的典型失效断面(–10℃)

    Figure  9.  Representative fracture surfaces of aluminum alloy-BFRP composite adhesive joint under tensile stress (–10℃)

    图  10  铝合金-BFRP复合材料粘接接头剪应力破坏的典型失效断面 (–10℃)

    Figure  10.  Representative fracture surfaces of aluminum alloy-BFRP composite adhesive joint under shear stress (–10℃)

    图  11  铝合金-BFRP复合材料粘接接头拉应力破坏的典型失效断面 (–40℃)

    Figure  11.  Representative fracture surfaces of aluminum alloy-BFRP composite adhesive joint under tensile stress (–40℃)

    图  12  铝合金-BFRP复合材料粘接接头剪应力破坏的典型失效断面 (–40℃)

    Figure  12.  Representative fracture surfaces of aluminum alloy-BFRP composite adhesive joint under shear stress (–40℃)

    图  13  未老化及极限工况下(−40℃老化30 天)铝合金-BFRP复合材料粘接接头的失效断面

    Figure  13.  Failure section of aluminum alloy-BFRP composite bonding joint without aging and aging at −40℃ for 30 days

    图  14  不同老化时间铝合金-BFRP复合材料粘接结构的准静态失效强度

    Figure  14.  Quasi-static failure strengths of aluminum alloy-BFRP composite bonding structures under different aging cycles

    图  15  失效准则随老化时间变化的三维响应曲面

    Figure  15.  Three-dimensional response surface of the failure criterion as a function of aging cycles

    表  1  玄武岩纤维单向布材料属性参数

    Table  1.   Property parameters of basalt fiber unidirectional fabric

    Surface density/
    (g·m−2)
    Tensile strength/
    MPa
    Elasticity modulus/
    GPa
    Nominal thickness/
    mm
    Single fiber diameter/
    μm
    3002 1001050.11513
    下载: 导出CSV

    表  2  复合成型树脂5113-81A/5113-94B材料属性参数

    Table  2.   Property parameters of composite molding resin 5113-81A/ 5113-94B

    Cure conditionCompressive strength/MPaTensile Strength/MPaFlexural strength/MPaTg/℃
    25℃×24 h+
    80℃×2 h
    126-13060-7080-9490-100
    Note: Tg—Glass transfer temperature.
    下载: 导出CSV

    表  3  铝合金材料属性参数

    Table  3.   Properties of aluminum alloy

    MaterialYoung’s modulus/GPaPoisson’s
    ratio
    Density/
    (kg·m−3)
    Aluminum (6061)710.332 730
    下载: 导出CSV

    表  4  Araldite® 2015材料属性参数

    Table  4.   Material properties of Araldite® 2015

    Young’s modulus/MPaShear modulus/MPaPoisson’s ratio
    1 8505600.33
    下载: 导出CSV
  • [1] 那景新, 慕文龙, 谭伟, 等. 一种车辆服役温度区间内的粘接接头疲劳性能测试装置及测试方法: 中国, 201810425629.9[P]. 2018-11-02.

    NA Jingxin, MU Wenlong, TAN Wei, et al. The invention relates to a calculation method for stiffness performance and strength of structural weight reduction orifice plate: China, 201810425629.9[P]. 2018-11-02 (in Chinese).
    [2] 秦国锋, 那景新, 慕文龙, 等. CFRP/铝合金粘接接头在低温环境中的老化机理研究[J]. 中国胶粘剂, 2019, 28(8):27-33.

    QIN Guofeng, NA Jingxin, MU Wenlong, et al. Study on aging mechanism of CFRP/aluminum alloy bonded joints in low temperature environment[J]. China Adhesives,2019,28(8):27-33(in Chinese).
    [3] LUAN J Z , NA J X , TAN W , et al. Comparative study on mechanical properties of aluminum alloy and BFRP single lap joints with hygrothermal aging[J]. The Journal of Adhesion, 2020(6):1-18.
    [4] 那景新, 高原, 慕文龙, 等.高温老化对BFRP-铝合金单搭接接头失效的影响[J]. 复合材料学报, 2020, 37(1): 140-146.

    NA Jingxin, GAO Yuan, MU Wenlong, et al. Effect of high temperature exposure on adhesively bonded BFRP-aluminum alloy single lap joints[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 140-146(in Chinese).
    [5] 韩啸. 胶接接头湿热环境耐久性试验与建模研究[D]. 大连: 大连理工大学, 2014.

    HAN Xiao. Experimental and modelling study on the durability performance of adhesively bonded joint in hygro-thermal environment[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
    [6] ZHAO H, MA X, CAI Z, et al. Effect of low temperature exposure on impact characteristics of epoxy bonded high strength steels[J]. Science and Technology of Welding and Joining,2011,16(5):405-411. doi:  10.1179/1362171810Y.0000000011
    [7] ZHANG F, YANG X, WANG H P, et al. Durability of adhesively-bonded single lap–shear joints in accelerated hygrothermal exposure for automotive applications[J]. International Journal of Adhesion and Adhesives,2013,44(Complete):130-137.
    [8] 黄强, 赵鑫刚, 刘波, 等. 改性环氧树脂胶粘剂耐热老化性能的研究[J]. 黑龙江大学自然科学学报, 2011, 28(2):229-232. doi:  10.3969/j.issn.1001-7011.2011.02.020

    HUANG Qiang, ZHAO Xingang, LIU Bo. Study on the properties of modification epoxy adhesive in heat-resistant aging[J]. Journal of Natural Science of Heilongjiang University,2011,28(2):229-232(in Chinese). doi:  10.3969/j.issn.1001-7011.2011.02.020
    [9] HU P, HAN X, LI W D, et al. Research on the static strength performance of adhesive single lap joints subjected to extreme temperature environment for automotive industry[J]. International Journal of Adhesion and Adhesives,2013,41:119-126. doi:  10.1016/j.ijadhadh.2012.10.010
    [10] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 长春: 吉林大学, 2018.

    QIN Guofeng, Effects of temperature and humidity on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018(in Chinese).
    [11] 秦国锋, 那景新, 慕文龙, 等. 高温老化对CFRP/铝合金粘接头失效的影响[J]. 吉林大学学报(工学版), 2019(4): 1-9.

    QIN Guofeng, NA Jingxin, MU Wenlong, et al. Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2019(4): 1-9(in Chinese).
    [12] 王晓宁. 紫外、高低温老化对玻纤增强复合材料性能的影响[D]. 乌鲁木齐: 新疆大学, 2017.

    WANG Xiaoning. Effects of UV, high and low temperature aging on glass fiber composite materials[D]. Urumqi: Xinjiang University, 2017(in Chinese).
    [13] 张春雷, 朱波, 乔琨, 等. 高低温老化对碳纤维复合材料芯棒力学性能的影响[J]. 高科技纤维与应用, 2012, 37(5):20-22,36.

    ZHANG Chunlei, ZHU Bo, QIAO Kun, et al. Effect of high-low temperature thermal aging on structure of carbon fiber reinforced composite core[J]. Hi-Tech Fiber and Application,2012,37(5):20-22,36(in Chinese).
    [14] OCAÑA R, ARENAS J M, ALÍA C, et al. Evaluation of degradation of structural adhesive joints in functional automotive applications[J]. Procedia Engineering,2015,132:716-723. doi:  10.1016/j.proeng.2015.12.552
    [15] PLAZEK D J, FRUND Z N. Epoxy resins (DGEBA): The curing and physical aging process[J]. Journal of Polymer Science Part A Polymer Chemistry,2010,28(4):431-448.
    [16] BUDHE S, BANEA M D, BARROS S D, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion <italic>&</italic> Adhesives,2017,72:30-42.
    [17] 中国国家标准化管理委员会. 胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republicof China. Adhesive-Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] LEE M, YEO E, BLACKLOCK M, et al. Predicting the strength of adhesively bonded joints of variable thickness using a cohesive element approach[J]. International Journal of Adhesion <italic>&</italic> Adhesives,2015,58:44-52.
    [19] 谭伟, 那景新, 任俊铭, 等. 高温环境下碳纤维增强树脂复合材料的层间力学性能老化行为与失效预测[J]. 复合材料学报, 2020, 37(4): 859-868.

    TAN Wei, NA Jingxin, REN Junming, et al. Aging behavior and failure prediction of interlaminar mechanical properties of carbon fiber reinforced polymer at high temperature[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 859-868(in Chinese).
    [20] SILVA L F M D, ADAMS R D. Joint strength predictions for adhesive joints to be used over a wide temperature range[J]. International Journal of Adhesion and Adhesives,2007,27(5):362-379. doi:  10.1016/j.ijadhadh.2006.09.007
    [21] 慕文龙, 那景新, 秦国锋, 等. 交变载荷对CFRP复合材料-铝合金粘接接头剩余强度的影响[J]. 复合材料学报, 2019, 36(5):1124-1131.

    MU Wenlong, NA Jingxin, QIN Guofeng, et.al. Effect of alternating load on residual strength of adhesively bonded CFRP composite-aluminum alloy joints[J]. Acta Materiae Compositae Sinica,2019,36(5):1124-1131(in Chinese).
  • [1] 张荣华, 史可宇, 李硕, 张一帆.  平纹编织碳纤维增强树脂复合材料离散电导率建模方法, 复合材料学报.
    [2] 李斌, 常飞, 肖尧, 李曙林, 孙晋茹.  碳纤维增强银粉改性树脂复合材料的雷击损伤效应, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191118.002
    [3] 李云芳, 潘俊臣, 郎风超, 杨诗婷, 姜爱峰, 李继军.  碳纤维增强树脂复合材料细观蠕变性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191118.001
    [4] 刘新, 陈铎, 何辉永, 孙涛, 武湛君.  热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.006
    [5] 陈丁丁, 朱萌, 胡其高, 王曼漪, 王蕊.  含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190822.001
    [6] 陈昊, 柴亚南, 迟坚, 陆磊.  复合材料机身曲板环向弯曲加载试验及失效机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191221.001
    [7] 孙伟, 张炜, 郭剑, 贾丽芳, 李晓杰.  Ti-Cu层状复合材料静态载荷下变形与失效机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190917.001
    [8] 黄鑫, 姜景山, 孙天洋, 蒋威.  玄武岩-碳纤维/矿渣混凝土力学性能正交试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190930.001
    [9] 曹玉贵, 赵国旭, 尹亚运.  基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测, 复合材料学报.
    [10] 郭丽君, 陆方舟, 李想, 蔡登安, 张庆茂, 陈建农, 刘伟先, 周光明.  碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200102.001
    [11] 薛维培, 刘晓媛, 姚直书, 程桦, 李昊鹏.  不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200219.001
    [12] 王庆轩, 丁一宁.  玄武岩纤维网格布增强混凝土板双向弯曲性能试验, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190823.001
    [13] 牟明明, 袁光明, 陈世尧.  纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190929.004
    [14] 韩耀璋, 李进, 张佃平, 康少付, 马鹏, 周少雄.  原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191017.001
    [15] 祁睿格, 何春霞, 晋强.  麦秸/聚氯乙烯复合材料新疆户外老化性能, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191113.003
    [16] 杨凤祥, 陈静芬, 陈善富, 刘志明.  基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20200110.002
    [17] 何柏灵, 葛东云.  复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20191030.004
    [18] 罗健, 石建军, 贾彬, 莫军, 黄辉.  低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响, 复合材料学报.
    [19] 栾建泽, 宋学伟, 那景新, 谭伟, 慕文龙.  服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响, 复合材料学报. doi: 10.13801/j.cnki.fhclxb.20190708.001
    [20] 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证, 复合材料学报.
  • 加载中
图(15) / 表ll (4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  31
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 录用日期:  2019-09-23
  • 网络出版日期:  2019-10-14
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回