留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙二醇二缩水甘油醚原位交联纤维素-磷虾蛋白复合纤维的结构与性能

马跃 郭静 赵秒 宫玉梅

马跃, 郭静, 赵秒, 等. 乙二醇二缩水甘油醚原位交联纤维素-磷虾蛋白复合纤维的结构与性能[J]. 复合材料学报, 2020, 37(5): 1156-1166. doi: 10.13801/j.cnki.fhclxb.20190923.002
引用本文: 马跃, 郭静, 赵秒, 等. 乙二醇二缩水甘油醚原位交联纤维素-磷虾蛋白复合纤维的结构与性能[J]. 复合材料学报, 2020, 37(5): 1156-1166. doi: 10.13801/j.cnki.fhclxb.20190923.002
MA Yue, GUO Jing, ZHAO Miao, et al. Structure and properties of cellulose-krill protein composite fibers in situ crosslinked with ethylene glycol diglycidyl ether[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1156-1166. doi: 10.13801/j.cnki.fhclxb.20190923.002
Citation: MA Yue, GUO Jing, ZHAO Miao, et al. Structure and properties of cellulose-krill protein composite fibers in situ crosslinked with ethylene glycol diglycidyl ether[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1156-1166. doi: 10.13801/j.cnki.fhclxb.20190923.002

乙二醇二缩水甘油醚原位交联纤维素-磷虾蛋白复合纤维的结构与性能

doi: 10.13801/j.cnki.fhclxb.20190923.002
基金项目: 国家自然科学基金(51373027;51773024)
详细信息
    通讯作者:

    郭静,博士,教授,博士生导师,研究方向为高分子材料改性和纤维材料加工成型 E-mail:guojing8161@163.com

  • 中图分类号: TB332

Structure and properties of cellulose-krill protein composite fibers in situ crosslinked with ethylene glycol diglycidyl ether

  • 摘要: 以纤维素(Cell)和南极磷虾蛋白(AKP)为原料,以乙二醇二缩水甘油醚(EGDE)为潜在交联剂,NaOH和尿素水溶液作溶剂,在低温下溶解Cell和AKP后,加入EGDE制备Cell-AKP-EGDE复合纺丝原液,将纺丝原液挤入H2SO4-Na2SO4-H2O构成的凝固浴中,经热拉伸定型获得EGDE原位交联的Cell-AKP复合纤维。利用FTIR研究了交联剂EGDE的含量对Cell-AKP复合体系分子间相互作用的影响,采用SEM、XRD、TG等考察了交联剂EGDE的含量与Cell-AKP复合体系的表面形态、结晶性、热稳定性和力学性能的相关性。结果表明:交联剂EGDE含量的不同对Cell-AKP复合纤维的表观黏度、力学性能、结晶性及表面形态等均有影响,且交联剂EGDE含量为3wt%时,Cell-AKP复合纤维的综合性能较好。

     

  • 图  1  不同剪切速率下Cell-AKP-EGDE复合溶液的黏度

    Figure  1.  Viscosity of Cell-AKP-EGDE composite solution with different shear rates

    图  2  Cell-AKP-EGDE复合溶液的黏度随温度变化曲线

    Figure  2.  Variation curves of viscosity of Cell-AKP-EGDE composite solution with temperature

    图  3  EGDE原位交联Cell-AKP复合纤维的机制

    Figure  3.  Mechanism of EGDE in situ crosslinking Cell-AKP composite fibers

    图  4  Cell、AKP、EGDE(a)和Cell-AKP-EGDE复合纤维(b)的FTIR图谱

    Figure  4.  FTIR spectra of Cell, AKP, EGDE (a) and Cell-AKP-EGDE composite fibers (b)

    图  5  Cell和Cell-AKP-EGDE复合纤维氢键的高斯拟合曲线

    Figure  5.  Gauss fitting curves of hydrogen bond of Cell and Cell-AKP-EGDE composite fibers

    图  6  Cell-AKP-EGDE复合纤维的断裂强度和断裂伸长率

    Figure  6.  Tensile strength and elongation at break of Cell-AKP-EGDE composite fibers

    图  7  Cell和Cell-AKP-EGDE复合纤维的TG (a)和DTG(b)曲线

    Figure  7.  TG (a) and DTG (b) curves of Cell and Cell-AKP-EGDE composite fibers

    图  8  原料Cell、再生Cell、AKP及Cell-AKP-EGDE复合纤维的XRD图谱

    Figure  8.  XRD patterns of raw Cell, regenerative Cell, AKP and Cell-AKP-EGDE composite fibers

    图  9  Cell-AKP-EGDE复合纤维表面的SEM图像

    Figure  9.  SEM images of surface of Cell-AKP-EGDE composite fibers

    图  10  Cell-AKP-EGDE复合纤维断面的SEM图像

    Figure  10.  SEM images of cross-section morphologies of Cell-AKP-EGDE composite fibers

    表  1  不同乙二醇二缩水甘油醚(EGDE)含量的纤维素-磷虾蛋白-EGDE (Cell-AKP-EGDE)复合纤维编号

    Table  1.   Number of cellulose-antarctic krill protein-ethylene glycol diglycidyl ether (Cell-AKP-EGDE) composite fibers with different contents of EGDE

    No.123456
    EGDE mass fraction/wt%0357911
    下载: 导出CSV

    表  2  不同剪切速率下AKP、Cell、AKP-EGDE、Cell-EGDE、Cell-EGDE-AKP、Cell-AKP-EGDE复合溶液的黏度η

    Table  2.   Viscosity η of AKP, Cell, AKP-EGDE, Cell-EGDE, Cell-EGDE-AKP and Cell-AKP-EGDE composite solutions with different shear rates

    Speed/s–1Viscosity η/(Pa·S)
    AKPAKP-EGDECellCell-EGDECell-EGDE-AKPCell-AKPCell-AKP-EGDE
    20.03800.05404.0614.5675.8764.7856.214
    200.01150.01642.9183.2593.6633.3383.981
    500.08100.01152.4342.6342.8312.6823.106
    下载: 导出CSV

    表  3  Cell和Cell-AKP-EGDE复合纤维的氢键拟合结果

    Table  3.   Hydrogen bond fitting results of Cell and Cell-AKP-EGDE composite fibers

    SampleHydrogen bond typeFitting curveAbbreviationsWavenumber/cm–1Average peak areaRelative strength/%
    CellFree hydroxyl—OH3 5716.603.763.76
    IntramolecularOH...OH3 445103.4859.3260.88
    Hydrogen bondAnnular polymer3 1182.731.56
    Hydrogen bondOH...ether O3 27461.7035.3635.36
    1Free hydroxyl—OH3 6112.734.054.05
    IntramolecularOH. . .OH3 42840.7060.4562.94
    Hydrogen bondAnnular polymer3 1311.682.49
    IntermolecularOH. . .π3 24113.6920.3233.01
    Hydrogen bondOH. . .ether O3 5508.1212.05
    OH. . .N3 0750.430.63
    2Free hydroxyl—OH3 6500.510.700.70
    IntramolecularOH...OH3 43349.6468.2170.36
    Hydrogen bondVAnnular polymer3 1241.562.15
    IntermolecularOH...π3 23810.4014.3028.94
    Hydrogen bondOH...ether O3 57710.3614.25
    OH...N3 0690.280.39
    4Free hydroxylI—OH3 6251.721.911.91
    IntramolecularOH...OH3 43558.6165.3167.57
    Hydrogen bondAnnular polymer3 1302.032.26
    IntermolecularOH...π3 24017.5619.5730.52
    Hydrogen bondOH...ether O3 5659.2410.30
    OH...N3 0750.580.65
    6 Free hydroxyl—OH3 6290.811.271.27
    IntramolecularOH...OH3 43745.7771.5373.27
    Hydrogen bondAnnular polymer3 1251.111.74
    IntermolecularOH...π3 5705.839.1125.46
    Hydrogen bondOH...ether O3 23510.1915.92
    OH...N3 0740.280.43
    下载: 导出CSV

    表  4  Cell-AKP-EGDE复合纤维的结晶度

    Table  4.   Crystallinity of Cell-AKP-EGDE composite fibers

    EGDE mass fraction/wt%0357911
    Crystallinity/%65.8661.1362.5864.5760.3956.43
    下载: 导出CSV
  • [1] SIRVIÖ J. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent[J]. Journal of Materials Chemistry A,2019,7(2):755-763. doi: 10.1039/C8TA09959F
    [2] PUSPASARI T, AKHTAR F H, OGIEGLO W, et al. High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose[J]. Journal of Materials Chemistry A,2018,6(19):9271-9279. doi: 10.1039/C8TA00350E
    [3] 陈港, 胡稳, 朱朋辉, 等. 高透明羧甲基纤维素/纤维素纤维复合薄膜的制备及其力学性能[J]. 复合材料学报, 2018, 35(6):1574-1581.

    CHEN G, HU W, ZHU P H, et al. Preparation and mechanical properties of highly transparent CMC/cellulose composite films[J]. Acta Materiae Compositae Sinica,2018,35(6):1574-1581(in Chinese).
    [4] BABAEE M, JONOOBI M, HAMZEH Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers[J]. Carbohydrate Polymers,2015,132:1-8. doi: 10.1016/j.carbpol.2015.06.043
    [5] KANNAM S K, OEHME D, DOBLIN M, et al. Hydrogen bonds and twist in cellulose microfibrils[J]. Carbohydrate Polymers,2017,175:433-439. doi: 10.1016/j.carbpol.2017.07.083
    [6] UTO T, YAMAMOTO K, KADOKAWA J I. Cellulose crystal dissolution in imidazolium-based ionic liquids: A theoretical study[J]. Journal of Physical Chemistry B,2017,122(1):258-266.
    [7] PIRAS C C, FERNÁNDEZ-PRIETO S, BORGGRAEVE W M D. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives[J]. Nanoscale Advances,2019,1(3):937-947. doi: 10.1039/C8NA00238J
    [8] LING Z, WANG T, MAKAREM M, et al. Effects of ball milling on the structure of cotton cellulose[J]. Cellulose,2019,26(1):305-328. doi: 10.1007/s10570-018-02230-x
    [9] GHANBARI A, TABARSA T, ASHORI A, et al. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing[J]. International Journal of Biological Macromolecules,2018,112:442-447. doi: 10.1016/j.ijbiomac.2018.02.007
    [10] 罗康佳, 郭建生, 李静怡, 等. 纤维素的溶解技术与研究现状[J]. 合成纤维, 2018, 47(1):1-5.

    LUO K J, GUO J S, LI J Y, et al. Dissolution technology and research status of cellulose[J]. Synthetic Fibers,2018,47(1):1-5(in Chinese).
    [11] KRYSZTOF M, OLEJNIK K, KULPINSKI P, et al. Regenerated cellulose from N-methylmorpholine N-oxide solutions as a coating agent for paper materials[J]. Cellulose,2018,25(6):3595-3607. doi: 10.1007/s10570-018-1799-y
    [12] LI W J, ZHANG F Y, WANG W K, et al. Rheological transitions and in-situ IR characterizations of cellulose/LiCl•DMAc solution as a function of temperature[J]. Cellulose,2018,25(9):4955-4968. doi: 10.1007/s10570-018-1923-z
    [13] DISSANAYAKE N, THALANGAMAARACHCHIGE V D, TROXELL S, et al. Substituent effects on cellulose dissolution in imidazolium-based ionic liquids[J]. Cellulose,2018,25(12):6887-6900. doi: 10.1007/s10570-018-2055-1
    [14] CAO J, WEI W, GOU G Y, et al. Cellulose films from the aqueous DMSO/TBAH-system[J]. Cellulose,2018,25(12):1-12.
    [15] 王文聪, 杜淑宁, 王鸿博, 等. 低取代羟乙基纤维素在碱溶剂中的溶解行为及其机制[J]. 纺织学报, 2018, 39(10):18-23.

    WANG W C, DU S N, WANG H B, et al. Dissolution behavior and mechanisms of low substituted hydroxyethyl cellulose in alkali solvents[J]. Journal of Textiles,2018,39(10):18-23(in Chinese).
    [16] WANG S, LYU K J, SUN P, et al. Influence of cation on the cellulose dissolution investigated by MD simulation and experiments[J]. Cellulose,2017,24(11):1-11.
    [17] CHENG G, ZHU P X, LI J L, et al. All-cellulose films with excellent strength and toughness via a facile approach of dissolution-regeneration[J]. Journal of Applied Polymer Science,2019,136(2):46925-46936. doi: 10.1002/app.46925
    [18] CAI J, ZHANG L N, LIU S L, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures[J]. Macromolecules,2008,41(23):9345-9351. doi: 10.1021/ma801110g
    [19] HUANG J C, ZHONG Y, ZHANG L N, et al. Extremely strong and transparent chitin films: A high-efficiency, energy-saving, and “Green” route using an aqueous KOH/Urea solution[J]. Advanced Functional Materials,2017,27(26):1701100-1701110. doi: 10.1002/adfm.201701100
    [20] CHENG D, WEI P D, ZHANG L N, et al. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites[J]. RSC Advances,2018,8(48):27045-27053. doi: 10.1039/C8RA04163F
    [21] KAMMIOVIRTA K, JÄÄSKELÄINEN A S, KUUTTI L, et al. Keratin-reinforced cellulose filaments from ionic liquid solutions[J]. RSC Advances,2016,6(91):88797-88806. doi: 10.1039/C6RA20204G
    [22] HE M, CHEN H, ZHANG X J, et al. Construction of novel cellulose/chitosan composite hydrogels and films and their applications[J]. Cellulose,2018,25(3):1-10.
    [23] KIM J R, NETRAVALI A N. Self-healing green composites based on soy protein and microfibrillated cellulose[J]. Composites Science & Technology,2017,143:22-30.
    [24] ZHAO Y T, HE M, JIN H F, et al. Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering[J]. Chemical Engineering Journal,2018,341:402-413. doi: 10.1016/j.cej.2018.02.046
    [25] 全沁果, 段伟文, 曾雪鸽, 等. 南极磷虾粉成分分析及营养学评价[J]. 食品与机械, 2018, 34(9):68-76.

    QUAN Q G, DUAN W W, ZENG X G, et al. Composition analysis and nutritional evaluation of antarctic krill powder[J]. Food and Machinery,2018,34(9):68-76(in Chinese).
    [26] HUANG J W, CUI C, ZHENG X J, et al. Study on defluorination technology of antarctic krill protein hydrolysate[J]. China Condiment,2018,43(1):1-8.
    [27] GUO F, WANG Z H, SHI W Z, et al. Distribution characteristics and speciation of fluorine in different parts of antarctic krill[J]. Food Science,2018,39(8):237-242.
    [28] BAX M L, AUBRY L, FERREIRA C, et al. Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechanisms[J]. Journal of Agricultural & Food Chemistry,2012,60(10):2569-76.
    [29] ZHANG R, GUO J, LIU Y, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers[J]. Carbohydrate Polymers,2018,189:72-78. doi: 10.1016/j.carbpol.2018.02.013
    [30] SONG J X, GUO J, ZHANG S, et al. Properties of cellulose/antarctic krill protein composite fibers prepared in different coagulation baths[J]. International Journal of Biological Macromolecules,2018,114:334-340. doi: 10.1016/j.ijbiomac.2018.03.118
    [31] 杨利军, 郭静, 李圣林, 等. 高强度南极磷虾蛋白/海藻复合纤维的制备与表征[J]. 复合材料学报, 2016, 33(7):1524-1530.

    YANG L J, GUO J, LI S L, et al. Preparation and characterization of high strength antarctic krill protein/algae composite fibers[J]. Journal of Composite Materials,2016,33(7):1524-1530(in Chinese).
    [32] WU J, GUO J, YANG L J, et al. Molecular interaction and characterization of sodium alginate/antarctic krill protein/polyvinyl alcohol composite fiber[J]. Journal of Textile Research,2017,38(2):7-13.
    [33] XU S, LI R Q, ZHANG J F, et al. Ethylene glycol diglycidyl ether cross-linked with sodium alginate-carboxymethyl cellulose to immobilize lipase[J]. China Biotechnology,2017,37(12):77-83.
    [34] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014, 33(4):270-273.

    GUO J, LI X C, YU C F, et al. Extraction of antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian University of Technology,2014,33(4):270-273(in Chinese).
    [35] 李亮, 刘淑萍, 刘让同, 等. NaOH/尿素溶液中纤维素稳态流变性的浓度依赖性[J]. 纺织科技进展, 2017(9):30-33. doi: 10.3969/j.issn.1673-0356.2017.09.008

    LI L, LIU S P, LIU R T, et al. Concentration-dependent steady-state rheological properties of cellulose in NaOH/urea solution[J]. Advances in Textile Science and Technology,2017(9):30-33(in Chinese). doi: 10.3969/j.issn.1673-0356.2017.09.008
    [36] CAI J, ZHANG L N. Unique gelation behavior of cellulose in NaOH/urea aqueous solution[J]. Biomacromolecules,2006,7(1):183-189. doi: 10.1021/bm0505585
    [37] LIU J, WANG H F, ZHANG L, et al. Preparation, structure and performances of cross-linked regenerated cellulose fibers[J]. Wuhan University Journal of Natural Sciences,2019,24(1):1-7. doi: 10.1007/s11859-019-1361-2
    [38] ZHONG Z L, ZHANG X, ZHU M, et al. Effect of different pretreatments on solubility of hemp fibers in ionic liquids[J]. Journal of Donghua University (English Edition),2018,35(1):52-57.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  980
  • HTML全文浏览量:  198
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 录用日期:  2019-09-10
  • 网络出版日期:  2019-09-23
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回