留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/功能聚合物复合材料

周浪 王涛

周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
引用本文: 周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001
Citation: ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 997-1014. doi: 10.13801/j.cnki.fhclxb.20190919.001

石墨烯/功能聚合物复合材料

doi: 10.13801/j.cnki.fhclxb.20190919.001
基金项目: 国家自然科学基金(51863015);江西省“双千计划”(jxsq2018106025)
详细信息
    通讯作者:

    王涛,博士,教授,博士生导师,研究方向为功能性复合材料 E-mail:wangt0715@ncu.edu.cn

  • 中图分类号: TB332

Graphene/functional polymer composites

  • 摘要: 常规的聚合物与石墨烯组成复合材料时,聚合物的引入经常会损害石墨烯的一些性能,如降低石墨烯材料本征的高导电性、导热能力、高比表面积等,因此石墨烯/聚合物复合材料的应用也受到颇多限制。如果基于不同的应用,通过设计或选用具有特定性能的功能聚合物,可以有针对性地增强石墨烯某些特定的性质,提高石墨烯/聚合物复合材料的应用性能,减弱甚至消除复合材料应用的限制性。本文基于上述这一功能聚合物定义范畴,以石墨烯/聚合物复合材料中石墨烯的维度进行分类,包括三维网络结构石墨烯、二维薄膜结构石墨烯、一维纤维结构石墨烯,介绍并讨论石墨烯/功能聚合物复合材料的制备方法和当前的应用进展,并分析存在的问题及发展前景。

     

  • 图  1  碎裂石墨烯泡沫/聚二甲基硅氧烷(PDMS)应变传感器制备示意图((a)、(b))及其感应脉搏时相对电阻变化(c)[30]

    Figure  1.  Schematic of fabrication of fractured graphene foam/polydimethylsiloxane(PDMS) strain sensors ((a),(b)) and relative resistance change of the sensor in response to pulse of radial artery from wrist (c)[30]

    图  2  智能表面石墨烯泡沫润湿性调节原理(a)、吸附不同油和有机溶剂示意图(b)以及在pH=7.0与pH=3.0之间吸附氯仿能力的循环性(c)[46]

    Figure  2.  Schematic of switchable wettability of as-fabricated smart surface graphene foam (a) and its adsorption capacity for oil and organic solvents (b) and recyclability of adsorption capacity for chloroform in water between pH of 7.0 and 3.0 (c)[46]

    图  3  不同凝胶(聚苯胺水凝胶(PANI hydrogel)、石墨烯/聚苯胺水凝胶(GPH7)、氮掺杂石墨烯/聚苯胺水凝胶(GMPH7)) 制备示意图(a)、GMPH7可能的化学结构(b)及其在不同电流密度下面电容性能及其耐弯折性能((c)、(d))[52]

    Figure  3.  Schematic of preparing different hydrogels (polyaniline(PANI) hydrogel, graphene/PANI hydrogel (GPH7), N-doped graphene/PANI hydrogel (GMPH7)) (a) and possible structure of GMPH7 (b), areal specific capacitance of supercapacitors against various current densities and capacitance retention of supercapacitors after mechanical bending cycles ((c),(d))[52]

    图  4  对比三种不同干燥方法制备的石墨烯/聚甲基丙烯酰胺(G/PAAM)气凝胶(冷冻干燥(G/PAAM-f)、真空干燥(G/PAAM-v)、空气干燥(G/PAAM-a)) (a)及G/PAAM-a热(b)和电(c)驱动的形状记忆性能[54]

    Figure  4.  Comparison of the appearances of graphene/polymethacrylamide(G/PAAM) composites aerogels by three different drying processes (freeze drying(G/PAAM-f), vacuum drying(G/PAAM-v), air drying(G/PAAM-a)) (a) and thermally (b) and electrically (c) activated shape-memory behaviors of G/PAAM-a[54]

    图  5  气相聚合法制备石墨烯/聚二氧噻吩(graphene/PEDOT)复合薄膜示意图(a)及其AFM表征的平面模量(b)和石墨烯/聚二氧噻吩-甲苯磺酸盐(graphene/PEDOT-Tos)复合薄膜电极与Pt电极及PEDOT-Tos薄膜电极在不同pH下用于氧化还原反应的稳态输出电流对比(c)[62]

    Figure  5.  Schematic of creating graphene/poly(3,4-ethylenedioxythiophene) (graphene/PEDOT) composite thin film in vapor phase polymerization (a), in-plane modulus of thin films by AFM experiments (b) and comparison of measured steady state conversion current densities of graphene/PEDOT-tosylate(Tos) composite thin film electrodes, Pt electrodes and PEDOT-Tos thin film electrodes in oxygen reduction reaction at different pH values(c)[62]

    图  6  基于石墨烯/共聚酯复合膜的可拉伸热致电器件结构示意图(a)及在不同温差下得到的热电流(b)[75]

    Figure  6.  Schematic diagram showing the structure of stretchable thermoelectric device based on graphene/ecoflex composite film (a) and output currents of thermoelectric film measured under various thermal gradients (b)[75]

    图  7  可拉伸和断裂自修复纤维超级电容器(a)及其分别在拉伸和自修复后的电容性能((b)、(c))[95]

    Figure  7.  Schematic illustration of manufacturing process of stretchable and wound self-healable supercapacitor (a) and evolutions of specific capacitance of supercapacitor before and after stretching and self-healing ((b),(c))[95]

    图  8  石墨烯/聚多巴胺(PDA)复合纤维的制备示意图(a)、氮含量XPS分析(插图是PDA热解后可能的化学结构)(b)及不同纤维的应力-应变曲线(c)[96]

    Figure  8.  Schematic illustration of fabrication process for graphene/polydopamine(PDA) composite fibers (a), nitrogen contents from XPS analyses and calculated electrical conductivities of different fibers (inset is the suggested chemical structure conversion of PDA during pyrolysis) (b) and stress-strain curves for different fibers (c)[96]

  • [1] QI X, PU K Y, LI H, et al. Amphiphilic graphene composites[J]. Angewandte Chemie-International Edition,2010,49(49):9426-9429. doi: 10.1002/anie.201004497
    [2] RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology,2008,3(6):327-331. doi: 10.1038/nnano.2008.96
    [3] SANCHEZ M, MORICHE R, SANCHEZ-ROMATE X F, et al. Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis[J]. Composites Science and Technology,2019,181:107697. doi: 10.1016/j.compscitech.2019.107697
    [4] HAN T H, LEE W J, LEE D H, et al. Peptide/graphene hybrid assembly into core/shell nanowires[J]. Advanced Materials,2010,22(18):2060-2064. doi: 10.1002/adma.200903221
    [5] WANG S, GOH B M, MANGA K K, et al. Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties[J]. ACS Nano,2010,4(10):6180-6186. doi: 10.1021/nn101800n
    [6] JAHAN M, BAO Q, YANG J X, et al. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire[J]. Journal of the American Chemical Society,2010,132(41):14487-14495. doi: 10.1021/ja105089w
    [7] FAN Z, YAN J, ZHI L, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials,2010,22(33):3723-3728. doi: 10.1002/adma.201001029
    [8] REZAEIFAR Z, ROUNAGHI G H, ES'HAGHI Z, et al. Electrochemical determination of anticancer drug, flutamide in human plasma sample using a microfabricated sensor based on hyperbranchedpolyglycerol modified graphene oxide reinforced hollow fiber-pencil graphite electrode[J]. Materials Science and Engineering: C,2018,91:10-18. doi: 10.1016/j.msec.2018.05.017
    [9] QUINN M D J, WANG T, AL KOBAISI M, et al. PEO-PPO-PEO surfactant exfoliated graphene cyclodextrin drug carriers for photoresponsive release[J]. Materials Chemistry and Physics,2018,205:154-163. doi: 10.1016/j.matchemphys.2017.11.012
    [10] ZHANG M, HUANG L, CHEN J, et al. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes[J]. Advanced Materials,2014,26(45):7588-7592. doi: 10.1002/adma.201403322
    [11] GE S, ARABY S, GIBSON C T, et al. Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications[J]. Advanced Functional Materials,2018,28(19):1706705. doi: 10.1002/adfm.201706705
    [12] LI A, ZHANG C, ZHANG Y F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications[J]. Polymers,2017,9(9):437.
    [13] BAULD R, CHOI D Y W, BAZYLEWSKI P, et al. Thermo-optical characterization and thermal properties of graphene-polymer composites: A review[J]. Journal of Materials Chemistry C,2018,6(12):2901-2914. doi: 10.1039/C7TC01719G
    [14] YANG J, YE Y, LI X, et al. Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application[J]. Composites Science and Technology,2018,164:187-194. doi: 10.1016/j.compscitech.2018.05.044
    [15] HUANGFU Y, LIANG C, HAN Y, et al. Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites[J]. Composites Science and Technology,2019,169:70-75. doi: 10.1016/j.compscitech.2018.11.012
    [16] GUO H, LIU J, WANG Q, et al. High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance[J]. Composites Science and Technology,2019,181:107713. doi: 10.1016/j.compscitech.2019.107713
    [17] SONG P, LIANG C, WANG L, et al. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology,2019,181:107698. doi: 10.1016/j.compscitech.2019.107698
    [18] XU Y X, WU Q O, SUN Y Q, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano,2010,4(12):7358-7362. doi: 10.1021/nn1027104
    [19] CHEN Y, QI Y, YAN X, et al. Green fabrication of porous chitosan/graphene oxide composite xerogels for drug delivery[J]. Journal of Applied Polymer Science,2014,131(6):596-602.
    [20] OUYANG W Z, SUN J H, MEMON J, et al. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors[J]. Carbon,2013,62:501-509. doi: 10.1016/j.carbon.2013.06.049
    [21] XIE L, CAO X, LIU C, et al. Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties[J]. Materials Express,2014,4(5):429-434. doi: 10.1166/mex.2014.1188
    [22] GU X, YANG Y, HU Y, et al. Facile fabrication of graphene-polypyrrole-Mn composites as high-performance electrodes for capacitive deionization[J]. Journal of Materials Chemistry A,2015,3(11):5866-5874. doi: 10.1039/C4TA06646D
    [23] QIN Y, PENG Q, DING Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano,2015,9(9):8933-8941. doi: 10.1021/acsnano.5b02781
    [24] WANG M, YUAN W, YU X, et al. Picomolar detection of mercury (II) using a three-dimensional porous graphene/polypyrrole composite electrode[J]. Analytical & Bioanalytical Chemistry,2014,406(27):6953-6956.
    [25] CHEN K W, CHEN L B, CHEN Y Q, et al. Three-dimensional porous graphene-based composite materials: Electrochemical synthesis and application[J]. Journal of Materials Chemistry,2012,22(39):20968-20976. doi: 10.1039/c2jm34816k
    [26] YE S, FENG J. Towards three-dimensional, multi-functional graphene-based nanocomposite aerogels by hydrophobicity-driven absorption[J]. Journal of Materials Chemistry A,2014,2(27):10365-10369. doi: 10.1039/c4ta01392a
    [27] 孙云飞, 陶重犇, 班建民, 等. 三维网状石墨烯/环氧树脂热界面复合材料的制备和热性能[J]. 复合材料学报, 2017, 34(6):1199-1204.

    SUN Y F, TAO C B, BAN J M, et al. Preparation and thermal performances of 3D graphene network/epoxy resin thermal interface composites[J]. Acta Materiae Compositae Sinica,2017,34(6):1199-1204(in Chinese).
    [28] WU C, HUANG X, WU X, et al. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators[J]. Advanced Materials,2013,25(39):5658-5662. doi: 10.1002/adma.201302406
    [29] WOLTORNIST S J, OYER A J, CARRILLO J M, et al. Conductive thin films of pristine graphene by solvent interface trapping[J]. ACS Nano,2013,7(8):7062-7066. doi: 10.1021/nn402371c
    [30] JEONG Y R, PARK H, JIN S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam[J]. Advanced Functional Materials,2015,25(27):4228-4236. doi: 10.1002/adfm.201501000
    [31] BOLAND C S, KHAN U, RYAN G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J]. Science,2016,354(6317):1257-1260. doi: 10.1126/science.aag2879
    [32] ZHAO Z Q, CHEN X, YANG Q, et al. Selective adsorption toward toxic metal ions results in selective response: Electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite[J]. Chemical Communications,2012,48(16):2180-2182. doi: 10.1039/C1CC16735A
    [33] YANG Y, KANG M, FANG S, et al. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions[J]. Sensors & Actuators B Chemical,2015,214:63-69.
    [34] LIU J, WANG X, WANG T, et al. Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor[J]. ACS Applied Materials & Interfaces,2014,6(22):19997-20002.
    [35] LIU J, HE Z, XUE J, et al. A metal-catalyst free, flexible and free-standing chitosan/vacuum-stripped graphene/polypyrrole three dimensional electrode interface for high performance dopamine sensing[J]. Journal of Materials Chemistry B,2014,2(17):2478-2482. doi: 10.1039/C3TB21355B
    [36] YU D, ZENG Y, QI Y, et al. A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite[J]. Biosens Bioelectron,2012,38(1):270-277. doi: 10.1016/j.bios.2012.05.045
    [37] LIANG J, CAI Z, LI L, et al. Scalable and facile preparation of graphene aerogel for air purification[J]. RSC Advances,2014,4(10):4843-4847. doi: 10.1039/c3ra45147j
    [38] SUI Z Y, CUI Y, ZHU J H, et al. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents[J]. ACS Applied Materials & Interfaces,2013,5(18):9172-9179.
    [39] YANG X, LI Y, DU Q, et al. Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels[J]. Journal of Colloid and Interface Science,2015,453:107-114. doi: 10.1016/j.jcis.2015.04.042
    [40] CHENG C S, DENG J, LEI B, et al. Toward 3d graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers[J]. Journal of Hazardous Materials,2013,263 Pt 2:467-478.
    [41] WANG J, ZHAO G, JING L, et al. Facile self-assembly of magnetite nanoparticles on three-dimensional graphene oxide–chitosan composite for lipase immobilization[J]. Biochemical Engineering Journal,2015,98:75-83. doi: 10.1016/j.bej.2014.11.013
    [42] ZHANG Y, LIU J W, CHEN X W, et al. A three-dimensional amylopectin-reduced graphene oxide framework for efficient adsorption and removal of hemoglobin[J]. Journal of Materials Chemistry B,2015,3(6):983-989. doi: 10.1039/C4TB01792G
    [43] LI H, LIU L F, YANG F L. Covalent assembly of 3d graphene/polypyrrole foams for oil spill cleanup[J]. Journal of Materials Chemistry A,2013,1(10):3446-3453. doi: 10.1039/c3ta00166k
    [44] LI R, CHEN C, LI J, et al. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels[J]. Journal of Materials Chemistry A,2014,2(9):3057-3064. doi: 10.1039/c3ta14262k
    [45] HU H, ZHAO Z, WAN W, et al. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity[J]. ACS Applied Materials & Interfaces,2014,6(5):3242-3249.
    [46] ZHU H, CHEN D, LI N, et al. Graphene foam with switchable oil wettability for oil and organic solvents recovery[J]. Advanced Functional Materials,2015,25(4):597-605. doi: 10.1002/adfm.201403864
    [47] LIU W, LI H, ZENG Q, et al. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A,2015,3(7):3739-3747. doi: 10.1039/C4TA06091A
    [48] WANG C, HAN X J, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters,2011,98(7):072906. doi: 10.1063/1.3555436
    [49] REN Y, ZHU C, QI L, et al. Growth of g-Fe2O3 nanosheet arrays on graphene for electromagnetic absorption applications[J]. RSC Advances,2014,4(41):21510-21516. doi: 10.1039/C4RA01082E
    [50] YU H L, WANG T S, WEN B, et al. Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties[J]. Journal of Materials Chemistry,2012,22(40):21679-21685. doi: 10.1039/c2jm34273a
    [51] ZHANG J T, WANG J, YANG J, et al. Three-dimensional macroporous graphene foam filled with mesoporous polyaniline network for high areal capacitance[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2291-2296.
    [52] ZOU Y B, ZHANG Z C, ZHONG W B, et al. Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2018,6(19):9245-9256. doi: 10.1039/C8TA01366G
    [53] YU P, ZHAO X, HUANG Z, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. Journal of Materials Chemistry A,2014,2(35):14413-14420. doi: 10.1039/C4TA02721C
    [54] LI C, QIU L, ZHANG B, et al. Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams[J]. Advanced Materials,2016,28(7):1510-1516. doi: 10.1002/adma.201504317
    [55] LIN S, ZHONG Y, ZHAO X, et al. Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process[J]. Advanced Materials,2018,30(34):1803004. doi: 10.1002/adma.201803004
    [56] WU D B, CKSTR M E, HAKKARAINEN M. Starch derived nanosized graphene oxide functionalized bioactive porous starch scaffolds[J]. Macromolecular Bioscience,2017,17(6):1600397. doi: 10.1002/mabi.201600397
    [57] YUAN H C, LEE C Y, TAI N H. Extremely high thermal conductivity of nanodiamond-polydopamine/thin-layer graphene composite films[J]. Composites Science and Technology,2018,167:313-322. doi: 10.1016/j.compscitech.2018.08.010
    [58] QIAN Q, WANG Y, ZHANG M, et al. Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression[J]. Composites Science and Technology,2019,181:107660. doi: 10.1016/j.compscitech.2019.05.017
    [59] DUAN F, LIAO Y, ZENG Z, et al. Graphene-based nanocomposite strain sensor response to ultrasonic guided waves[J]. Composites Science and Technology,2019,174:42-49. doi: 10.1016/j.compscitech.2019.02.011
    [60] WANG B, LI Z, WANG C, et al. Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance[J]. Advanced Materials,2018,30(35):1707449. doi: 10.1002/adma.201707449
    [61] LI X, ZHANG R, YU W, et al. Stretchable and highly sensitive graphene-on-polymer strain sensors[J]. Scientific Reports,2012,2(1):870. doi: 10.1038/srep00870
    [62] VUCAJ N, QUINN M D J, BAECHLER C, et al. Vapor phase synthesis of conducting polymer nanocomposites incorporating 2D nanoparticles[J]. Chemistry of Materials,2014,26(14):4207-4213. doi: 10.1021/cm5014653
    [63] REN X N, ZHANG D Z, WANG D Y, et al. Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC/graphene oxide film[J]. IEEE Sensors Journal,2018,18(23):9471-9476. doi: 10.1109/JSEN.2018.2872854
    [64] NOH M J, OH M J, CHOI J H, et al. Layer-by-layer assembled multilayers of charged polyurethane and graphene oxide platelets for flexible and stretchable gas barrier films[J]. Soft Matter,2018,14(32):6708-6715. doi: 10.1039/C8SM00706C
    [65] WANG T, QUINN M D J, NOTLEY S M. Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions[J]. Carbon,2018,129:191-198. doi: 10.1016/j.carbon.2017.12.034
    [66] GUR B, AYHAN M E, TURKHAN A, et al. A facile immobilization of polyphenol oxidase enzyme on graphene oxide and reduced graphene oxide thin films: An insight into in-vitro activity measurements and characterization[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2019,562:179-185.
    [67] WU X, LI F, WEI W, et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT:PSS conductive film formed by spray-coating[J]. Vacuum,2014,101(3):53-56.
    [68] ESWARAIAH V, BALASUBRAMANIAM K, RAMAPRABHU S. One-pot synthesis of conducting graphene-polymer composites and their strain sensing application[J]. Nanoscale,2012,4(4):1258-1262. doi: 10.1039/c2nr11555g
    [69] YANG L J, TANG B B, WU P Y. UF membrane with highly improved flux by hydrophilic network between graphene oxide and brominated poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Journal of Materials Chemistry A,2014,2(43):18562-18573. doi: 10.1039/C4TA03790A
    [70] WANG X W, XIONG Z P, LIU Z, et al. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device[J]. Advanced Materials,2015,27(8):1370-1375. doi: 10.1002/adma.201404069
    [71] REN L, ZHANG G, LEI J, et al. Novel layered polyaniline-poly(hydroquinone)/graphene film as supercapacitor electrode with enhanced rate performance and cycling stability[J]. Journal of Colloid and Interface Science,2018,512:300-307. doi: 10.1016/j.jcis.2017.10.067
    [72] LADRON-DE-GUEVARA A, BOSCA A, PEDROS J, et al. Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser[J]. Applied Surface Science,2019,467:691-697.
    [73] LEE T, YUN T, PARK B, et al. Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: Importance of establishing intimate electronic contact through nanoscale blending[J]. Journal of Materials Chemistry,2012,22(39):21092-21099. doi: 10.1039/c2jm33111j
    [74] GAO Z, YANG W L, WANG J, et al. Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance[J]. Electrochimica Acta,2013,91(3):185-194.
    [75] ZHANG D, ZHANG K, WANG Y, et al. Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system[J]. Nano Energy,2019,56:25-32. doi: 10.1016/j.nanoen.2018.11.026
    [76] 尹俊强, 张伟超. 石墨烯纳米片/聚乙烯复合薄膜电磁干扰屏蔽[J]. 复合材料学报, 2019, 36(2):293-303.

    YIN J Q, ZHANG W C. Electromagnetic interference shielding performance of graphene/nanosheet polyethylene composite films[J]. Acta Materiae Compositae Sinica,2019,36(2):293-303(in Chinese).
    [77] SONG W L, CAO M S, LU M M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon,2014,66(1):67-76.
    [78] MONDAL S, KUMAR A. Multifunctional silanized silica nanoparticle functionalized graphene oxide: Polyetherimide composite film for emi shielding applications[J]. Journal of Materials Science-Materials in Electronics,2018,29(16):14122-14131. doi: 10.1007/s10854-018-9545-7
    [79] CUI M, REN S, ZHAO H, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Chemical Engineering Journal,2018,335:255-266. doi: 10.1016/j.cej.2017.10.172
    [80] KUMARI S, PANIGRAHI A, SINGH S K, et al. Enhanced corrosion resistance and mechanical properties of nanostructured graphene-polymer composite coating on copper by electrophoretic deposition[J]. Journal of Coatings Technology & Research,2018,15(3):1-10.
    [81] LIU X, QI S, LI Y, et al. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly[J]. Water Research,2013,47(9):3081-3092. doi: 10.1016/j.watres.2013.03.018
    [82] 朱振亚, 王磊, 姜家良, 等. 纳米SiO2-氧化石墨烯/聚偏氟乙烯杂化膜的制备及特性[J]. 复合材料学报, 2018, 35(4):785-792.

    ZHU Z Y, WANG L, JIANG J L, et al. Preparation and properties of nano SiO2-GO/polyvinylidene fluoride hybrid membrane[J]. Acta Materiae Compositae Sinica,2018,35(4):785-792(in Chinese).
    [83] INGOLE P G, CHOI W, KIM K H, et al. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation[J]. Chemical Engineering Journal,2014,243(4):137-146.
    [84] CHOI H G, SHAH A A, NAM S E, et al. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis[J]. Desalination,2019,449:41-49. doi: 10.1016/j.desal.2018.10.012
    [85] CHENG M M, HUANG L J, WANG Y X, et al. Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification[J]. Journal of Materials Science,2019,54(1):252-264. doi: 10.1007/s10853-018-2828-9
    [86] BROWNSON D A C, BANKS C E. Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis[J]. Electrochemistry Communications,2011,13(2):111-113. doi: 10.1016/j.elecom.2010.11.024
    [87] WANG T, QUINN M D J, NGUYEN S H T, et al. Graphene films using a thermally curable surfactant[J]. Advanced Materials Interfaces,2016,3(15):1600182. doi: 10.1002/admi.201600182
    [88] WANG T, QUINN M D J, NOTLEY S M. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions[J]. RSC Advances,2017,7(6):3222-3228. doi: 10.1039/C6RA26432H
    [89] YOON O J, JUNG C Y, SOHN I Y, et al. Nanocomposite nanofibers of poly(D, L-lactic-co-glycolic acid) and graphene oxide nanosheets[J]. Composites Part A: Applied Science and Manufacturing,2011,42(12):1978-1984. doi: 10.1016/j.compositesa.2011.08.023
    [90] CHATTERJEE S, NUESCH F A, CHU B T T. Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers[J]. Chemical Physics Letters,2013,557(1):92-96.
    [91] LI B, YU B, HUCK W T, et al. Electrochemically induced surface-initiated atom-transfer radical polymerization[J]. Angewandte Chemie-International Edition,2012,51(21):5092-5095. doi: 10.1002/anie.201201533
    [92] QU G, CHENG J, LI X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials,2016,28(19):3646-3652. doi: 10.1002/adma.201600689
    [93] HUANG Y, HUANG Y, ZHU M, et al. Magnetic-assisted, self-healable, yarn-based supercapacitor[J]. ACS Nano,2015,9(6):6242-6251. doi: 10.1021/acsnano.5b01602
    [94] WANG H, ZHU B, JIANG W, et al. A mechanically and electrically self-healing supercapacitor[J]. Advanced Materials,2014,26(22):3638-3643. doi: 10.1002/adma.201305682
    [95] WANG S, LIU N, SU J, et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs[J]. ACS Nano,2017,11(2):2066-2074. doi: 10.1021/acsnano.6b08262
    [96] KIM I H, YUN T, KIM J E, et al. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity[J]. Advanced Materials,2018,30(40):1803267. doi: 10.1002/adma.201803267
    [97] JIANG Z, LI Q, CHEN M, et al. Mechanical reinforcement fibers produced by gel-spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites[J]. Nanoscale,2013,5(14):6265-6269. doi: 10.1039/c3nr00288h
    [98] COLEMAN J N. Liquid exfoliation of defect-free graphene[J]. Accounts of Chemical Research,2013,46(1):14-22. doi: 10.1021/ar300009f
    [99] SU C Y, LU A Y, XU Y, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. ACS Nano,2011,5(3):2332-2339. doi: 10.1021/nn200025p
    [100] LEE K Y, BYEON H H, JANG C, et al. Hydrodynamic assembly of conductive nanomesh of single-walled carbon nanotubes using biological glue[J]. Advanced Materials,2015,27(5):922-928. doi: 10.1002/adma.201404483
  • 加载中
图(8)
计量
  • 文章访问数:  1951
  • HTML全文浏览量:  341
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 录用日期:  2019-08-30
  • 网络出版日期:  2019-09-19
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回