留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能

孙琦 周宏 张航 刘国隆

孙琦, 周宏, 张航, 等. 改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能[J]. 复合材料学报, 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
引用本文: 孙琦, 周宏, 张航, 等. 改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能[J]. 复合材料学报, 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
SUN Qi, ZHOU Hong, ZHANG Hang, et al. Mechanical, thermal and dielectric properties of modified attapulgite-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
Citation: SUN Qi, ZHOU Hong, ZHANG Hang, et al. Mechanical, thermal and dielectric properties of modified attapulgite-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002

改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能

doi: 10.13801/j.cnki.fhclxb.20190918.002
基金项目: 黑龙江省自然科学基金(E2015058)
详细信息
    通讯作者:

    周宏,博士,教授,硕士生导师,研究方向为纳米复合电介质材料 E-mail:hongzhou@hrbust.edu.cn

  • 中图分类号: TB332

Mechanical, thermal and dielectric properties of modified attapulgite-graphene oxide/epoxy composites

  • 摘要: 分别用硅烷偶联剂KH560改性凹凸棒土(Attapulgite,ATP)和氧化石墨烯(Graphene oxide,GO),并将其复合制备ATP-GO复合物。以环氧树脂(Epoxy,EP)为基体,采用原位聚合法制备ATP-GO/EP复合材料。采用SEM和FTIR对ATP-GO复合物的形貌和化学结构进行表征。结果表明:ATP与GO成功键合并附着在GO表面;ATP-GO的加入,提高了EP的冲击强度、弯曲强度和热稳定性,降低了其介电常数和介电损耗。3wt%ATP-0.5wt%GO/EP复合材料的弯曲强度和冲击强度分别为138.58 MPa和20.80 kJ/m2,比纯EP分别提高了75.5%和351.6%,而其介电常数和介电损耗分别低至3.36和0.0118,比纯EP降低了7.7%和27.3%。

     

  • 图  1  凹凸棒土(ATP)和氧化石墨烯(GO)的改性及ATP-GO复合物的制备过程

    Figure  1.  Procedures for the modification of attapulgite(ATP) and graphene oxide(GO) as well as the preparation of ATP-GO hybrids

    图  2  ATP,ATP-KH560,GO,GO-KH560及ATP-GO的红外谱图

    Figure  2.  FTIR spectra of ATP, ATP-KH560, GO, GO-KH560 and ATP-GO

    图  3  ATP及复合物ATP-GO的SEM图像

    Figure  3.  SEM images of ATP and the hybrids of ATP-GO

    图  4  ATP-GO/EP复合材料的SEM图像

    Figure  4.  SEM images of the ATP-GO/EP composites

    图  5  ATP-0.5wt%GO/EP复合材料的力学性能

    Figure  5.  Mechanical properties of ATP-0.5wt%GO/EP composites

    图  6  ATP-GO/EP复合材料的热失重曲线

    Figure  6.  TGA curves of ATP-GO/EP composites

    图  7  ATP填充量对ATP-GO/EP复合材料介电常数(a)和介电损耗(b)的影响

    Figure  7.  Effects of ATP content on dielectric constant (a) and dielectric loss (b) of ATP-GO/EP composites

    表  1  纯EP和ATP-GO/EP复合材料的热重分析数据

    Table  1.   Thermogravimetric analysis data of pure EP and ATP-GO/EP composites

    SampleTemperature for mass loss/℃THRI*/℃T600/%
    Td5Td30
    Neat EP305395178 8.9
    1wt%ATP-0.5wt%GO/EP28339917310.4
    3wt%ATP-0.5wt%GO/EP35139918619.7
    5wt%ATP-0.5wt%GO/EP32539618012.7
    7wt%ATP-0.5wt%GO/EP35239818614.3
    Notes:THRI—Heat resistance index, THRI=0.49[Td5+0.6(Td30-Td5)];Td5Td30—Corresponding to decomposition temperature of 5% and 30% mass loss.
    下载: 导出CSV
  • [1] 谢志鹏, 张会旗, 原续波, 等. 环氧树脂增韧改性的研究进展[J]. 高分子通报, 2013(11):1-16.

    XIE Z P, ZHANG H Q, YUAN X B, et al. Research progress on toughening modification of epoxy resin[J]. Polymer Bulletin,2013(11):1-16(in Chinese).
    [2] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO J W, LIU M Y, NIU Y F. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [3] ZHANG Y R, ZHAO C J, LIU J, et al. Preparation and characterization of ultralow dielectric and fibrous epoxy thermoset cured with poly(arylene ether ketone) containing phenolic hydroxyl groups[J]. European Polymer Journal,2018,109:110-116. doi: 10.1016/j.eurpolymj.2018.08.059
    [4] LERF A, HE H, RIEDL T, et al. 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives[J]. Solid State Ionics,1997,101:857-862.
    [5] TARARAN A, ZOBELLI A, BENITO A, et al. Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy[J]. Chemistry of Materials,2016,28(11):3741-3748. doi: 10.1021/acs.chemmater.6b00590
    [6] LONG J P, LI S X, LIANG B, et al. Investigation of ther-mal behavior and mechanical property of the functionalised graphene oxide/epoxy resin nanocomposites[J]. Plastics Rubber and Composites,2019,48(3):127-136. doi: 10.1080/14658011.2019.1577027
    [7] 周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1309-1315.

    ZHOU H, PIAO M X, LI Q, et al. Preparation and properties of graphene oxide nanosheets/epoxy composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1309-1315(in Chinese).
    [8] LI X Y, ZHANG D Y, LIU X Q, et al. A tandem demetalization-desilication strategy to enhance the porosity of attapulgite for adsorption and catalysis[J]. Chemical Engineering Science,2016,141(2):184-194.
    [9] PAUL D R, Robeson L M. Polymer nanotechnology: nanocomposites[J]. Polymer,2008,49(15):3187-3204. doi: 10.1016/j.polymer.2008.04.017
    [10] LU H B, SHEN H, SONG Z, et al. Rod-like silicate-epoxy nanocomposites[J]. Macromolecular Rapid Communications,2005,26(18):1445-1450. doi: 10.1002/marc.200500360
    [11] ZHU L X, LIU P, WANG A. High clay-content attapulgite/poly(acrylic acid) nanocomposite hydrogel via surface-initiated redox radical polymerization with modified attapulgite nanorods as initiator and cross-linker[J]. Industrial & Engineering Chemistry Research,2014,53(5):2067-2071.
    [12] NIU X L, HUO L X, CAI C T, et al. Rod-like attapulgite modified by bifunctional acrylic resin as reinforcement for epoxy composites[J]. Industrial & Engineering Chemistry Research,2014,53(42):16359-16365.
    [13] LIU B, XIA Y, ZHOU Y F, et al. Improved dispersion of attapulgite nanorods in polymer with graphene oxide nanosheets[J]. Journal of Materials Science,2017,52(3):1369-1380. doi: 10.1007/s10853-016-0431-5
    [14] WANG R, LI Z, LIU W, et al. Attapulgite-graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites[J]. Composites Science and Technology,2013,87(21):29-35.
    [15] SINGHA S, THOMAS J M. Dielectric properties of epoxy nanocomposites[J]. Transactions on Dielectrics & Electrical Insulation IEEE,2008,15(1):12-23.
    [16] XU W W, NA H, ZHAO C J. Hollow-glass-microsphere-based biphenyl epoxy resin composite with low dielectric constant[J]. Chemical Research in Chinese Universities,2018,34(5):862-866. doi: 10.1007/s40242-018-7419-4
    [17] XIA Y, ZHU Y C, ZHOU Y F, et al. Improved dispersion of attapulgite in polypropylene by grap oxide and the enhanced mechanical properties[J]. Polymer Composites,2016,39(2):560-568.
    [18] 齐兵. 氧化石墨烯及Al2O3改性环氧树脂复合材料性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2016.

    QI B. Properties of alumina and graphene oxide modified epoxy composites[D]. Harbin: Harbin University of Science and Technology, 2016(in Chinese).
    [19] 国家质量技术监督局. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    China State Bureau of Quality and Technical Supervision. Resin casting body performance test method: GB/T 2567—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
    [20] 国家质量技术监督局. 塑料简支梁冲击性能的测定: GB/T 1043—2008[S]. 北京: 中国标准出版社, 2008.

    China State Bureau of Quality and Technical Supervision. Determination of impact properties of plastic simply supported beams: GB/T 1043—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
    [21] LI S J, YANG Z H, XU J M, et al. Montmorillonite-graphene oxide hybrids and montmorillonite-graphene oxide/epoxy composite: synthesis, characterization, and properties[J]. Polymer Composite,2017:1-12.
    [22] FAN C X, DUAN J K, Li Y, et al. Study on the preparation and properties of epoxy/PEI/nano-attapulgite nano-composites[J]. Materials Science Forum,2013,745-746:341-351. doi: 10.4028/www.scientific.net/MSF.745-746.341
    [23] CAMINO G, TARTAGLIONE G, FRACHE A, et al. Thermal and combustion behavior of layered silicate–epoxy nanocomposites[J]. Polymer Degradation and Stability,2005,90(2):354-362. doi: 10.1016/j.polymdegradstab.2005.02.022
    [24] ZHAO L, LIU P, LIANG G Z, et al. The origin of the curing behavior, mechanical and thermal properties of surface functionalized attapulgite/bismaleimide/diallyl bisphenol composites[J]. Applied Surface Science,2014,288:435-443. doi: 10.1016/j.apsusc.2013.10.052
    [25] NELSON J K, HU Y. Nanocomposite dielectrics properties and implications[J]. Journal of Physics D: Applied Physics,2005,38(2):213-222. doi: 10.1088/0022-3727/38/2/005
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  129
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-08-27
  • 网络出版日期:  2019-09-18
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回