留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响

黄朋朋 芦刚 严青松 郭振华 晏玉平

黄朋朋, 芦刚, 严青松, 等. 陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响[J]. 复合材料学报, 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002
引用本文: 黄朋朋, 芦刚, 严青松, 等. 陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响[J]. 复合材料学报, 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002
HUANG Pengpeng, LU Gang, YAN Qingsong, et al. Effect of ceramic-nylon composite fiber content on properties and micromorphologies of gypsum mold[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002
Citation: HUANG Pengpeng, LU Gang, YAN Qingsong, et al. Effect of ceramic-nylon composite fiber content on properties and micromorphologies of gypsum mold[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002

陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响

doi: 10.13801/j.cnki.fhclxb.20190909.002
基金项目: 国家自然科学基金(51861027);江西省优势科技创新团队重点项目(20181BCB19001)
详细信息
    通讯作者:

    芦刚,博士,副教授,研究方向为液态金属精密成形理论及工艺 E-mail:aimulalg@163.com

  • 中图分类号: TB332

Effect of ceramic-nylon composite fiber content on properties and micromorphologies of gypsum mold

  • 摘要: 向石膏粉料中添加不同含量陶瓷-尼龙复合纤维制备石膏铸型试样,测试分析陶瓷-尼龙复合纤维交织强化石膏试样的性能并观察其断口,研究陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响。结果表明,陶瓷-尼龙复合纤维含量对石膏铸型性能影响显著,随着陶瓷-尼龙复合纤维含量增加,石膏试样生胚抗弯强度呈倒V字形变化趋势,焙烧后的抗弯强度变化不大;石膏试样透气率随陶瓷-尼龙复合纤维含量的增加而增大,当石膏混合料中陶瓷-尼龙复合纤维质量分数为1.25wt%时达到最大值32.3,与传统石膏铸型相比,增大近21倍,尼龙纤维焙烧后形成的孔洞提高了石膏铸型透气率,陶瓷纤维保留在基体中提高强度,当陶瓷-尼龙复合纤维质量分数大于0.75wt%时,纤维会团聚并割裂基体;导热性和抗热震性随陶瓷-尼龙复合纤维含量的增加而先增大后减小,当陶瓷-尼龙复合纤维含量为0.75wt%~1wt%时,导热性和抗热震性相对最佳。

     

  • 图  1  石膏铸型焙烧工艺曲线

    Figure  1.  Firing process curve of gypsum mold

    图  2  陶瓷-尼龙复合纤维含量对石膏铸型生胚抗弯强度的影响

    Figure  2.  Effect of ceramic-nylon composite fiber content on flexural strength of green gypsum mold

    图  3  陶瓷-尼龙复合纤维含量对石膏铸型焙烧后抗弯强度的影响

    Figure  3.  Effect of ceramic-nylon composite fiber content on flexural strength of roasted gypsum mold

    图  4  陶瓷-尼龙复合纤维含量对石膏铸型透气率的影响

    Figure  4.  Effect of ceramic-nylon composite fiber content on gas permeability of gypsum mold

    图  5  不同陶瓷-尼龙复合纤维含量石膏铸型上孔洞的温度随时间的变化

    Figure  5.  Temperature variation of the hole in gypsum mold with different ceramic-nylon composite fiber contents

    图  6  800 ℃时不同陶瓷-尼龙复合纤维含量石膏铸型表面裂纹情况

    Figure  6.  Surface cracks of gypsum mold with different ceramic-nylon composite fiber contents at 800 ℃

    ((a)0; (b)0.25wt%; (c)0.5wt%; (d)0.75wt%; (e)1wt%; (f)1.25wt%)

    图  7  不同含量陶瓷-尼龙复合纤维增强石膏铸型焙烧后抗弯断裂时断口的SEM图像

    Figure  7.  SEM images of fractures of gypsum mold with different contents of ceramic-nylon composite fiber after bending resistance

    ((a)0; (b)0.25wt%; (c)0.5wt%; (d)0.75wt%; (e)1wt%; (f)1.25wt%)

    表  1  纤维的主要性能指标

    Table  1.   Main performance indicators of fiber

    Fiber typeLength/mmDiameter/μmTensile strength/GPaElastic coefficient/GPaDensity/(g·cm−3)Melting point/℃
    Ceramic fiber4-74-842901.851 800
    Nylon fiber49-130.95.171.16224
    下载: 导出CSV

    表  2  石膏铸型浆料成分质量分数

    Table  2.   Mass fraction of gypsum mold slurry compositions

    Slurry compositionGypsum(70 μm)Quartz(44 μm)Alumina(80 μm)Talcum(41 μm)K2SO4N-octanolWater-solid ratio
    Mass fraction/wt%402030820.0553
    下载: 导出CSV

    表  3  700~1 100 ℃不同陶瓷-尼龙复合纤维含量石膏铸型抗热震性能评级

    Table  3.   Thermal shock resistance rating of gypsum molds with different ceramic-nylon composite fiber contents from 700℃ to 1 100℃

    Temperature/℃Ceramic-nylon composite fiber mass fraction/wt%
    00.250.50.7511.25
    700
    800
    900
    1 000
    1 100
    下载: 导出CSV
  • [1] 芦刚, 毛蒲, 严青松, 等. 复合纤维含量对精铸硅溶胶型壳强度及透气性的影响[J]. 中国有色金属学报, 2015, 25(11):3164-3170.

    LU Gang, MAO Pu, YAN Qingsong, et al. Effect of composite fiber content on strength and gas permeability of precision cast silica sol shells[J]. The Chinese Journal of Nonferrouss Metals,2015,25(11):3164-3170(in Chinese).
    [2] ELIADES P, BHATTACHARYA S N, CHRYSS A, et al. The influence of hermitic clay on the time dependent properties of formulated gypsum plaster pastes[J]. Journal of Materials Science,2003,38:3871-3875. doi: 10.1023/A:1025961022923
    [3] EDMÉA L, MEIRA J B C, FILHO L E R, et al. Expansion of high flow mixtures of gypsum-bonded investments in contact with absorbent liners[J]. Dental Materials,2005,21(6):573-579. doi: 10.1016/j.dental.2004.12.001
    [4] 叶久新, 陈永泰. 石膏铸型熔模铸造工艺研究[J]. 湖南大学学报: 自然科学版, 2000, 27(3):49-53.

    YE Jiuxin, CHEN Yongtai. Research on investment casting process of gypsum casting[J]. Journal of Hunan University: Natural Science,2000,27(3):49-53(in Chinese).
    [5] 赵忠兴, 石颖科, 叶锦华. 石膏型快速烘干工艺的研究[J]. 特种铸造及有色合金, 2008, 28(6):460-461, 408. doi: 10.3870/j.issn.1001-2249.2008.06.017

    ZHAO Zhongxing, SHI Yingke, YE Jinhua. Research on rapid drying process of gypsum casting[J]. Special Casting & Nonferrous Alloys,2008,28(6):460-461, 408(in Chinese). doi: 10.3870/j.issn.1001-2249.2008.06.017
    [6] 程鲁, 董选普, 马戎, 等. 熔模铸造复杂薄壁镁合金易溃散性石膏型研究[J]. 特种铸造及有色合金, 2011, 31(8):736-739. doi: 10.3870/tzzz.2011.08.015

    CHENG Lu, DONG Xuanpu, MA Rong, et al. Research on casting of complex thin-walled magnesium alloy with investment casting[J]. Special Casting & Nonferrous Alloys,2011,31(8):736-739(in Chinese). doi: 10.3870/tzzz.2011.08.015
    [7] 张永红, 蒋玉明, 杨屹. 石膏型熔模特种铸造工艺[J]. 铸造技术, 2002, 23(6):347-349. doi: 10.3969/j.issn.1000-8365.2002.06.011

    ZHANG Yonghong, JIANG Yuming, YANG Yi. Casting process of gypsum casting melting model[J]. Foundry Technology,2002,23(6):347-349(in Chinese). doi: 10.3969/j.issn.1000-8365.2002.06.011
    [8] 吴先哲, 唐华, 肖乐. 石膏铸型抗热震性研究[J]. 铸造技术, 2010, 31(4):471-473.

    WU Xianzhe, TANG Hua, XIAO Le. Study on thermal shock resistance of gypsum casting[J]. Foundry Technology,2010,31(4):471-473(in Chinese).
    [9] 韩昌仁, 周铁涛, 王薇薇, 等. 石膏型简易制模工艺的研究[J]. 特种铸造及有色合金, 2000(4):27-29, 2. doi: 10.3321/j.issn:1001-2249.2000.04.010

    HAN Changren, ZHOU Tietao, WANG Weiwei, et al. Research on simple molding process of gypsum casting[J]. Special Casting & Nonferrous Alloys,2000(4):27-29, 2(in Chinese). doi: 10.3321/j.issn:1001-2249.2000.04.010
    [10] ASAOKA K, BAE J Y, LEE H H. Porosity of dental gypsum-bonded investments in setting and heating process[J]. Dental Materials Journal,2013,31(1):120-124.
    [11] BOBBY S, SINGAMNENI S. Influence of moisture in the gypsum moulds made by 3D printing[J]. Procedia Engineering,2014,97:1618-1625. doi: 10.1016/j.proeng.2014.12.312
    [12] 芦刚, 郭振华, 严青松, 等. 复合纤维配比对精铸硅溶胶型壳性能的影响[J]. 复合材料学报, 2018, 35(6):1535-1541.

    LU Gang, GUO Zhenhua, YAN Qingsong, et al. Influence of composite fiber ratio on properties of cast silica sol shells[J]. Acta Materiae Compositae Sinica,2018,35(6):1535-1541(in Chinese).
    [13] JONES S, YUAN C. Advances in shell moulding for investment casting[J]. Journal of Materials Processing Technology,2003,135(2-3):258-265. doi: 10.1016/S0924-0136(02)00907-X
    [14] 罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8):1935-1948.

    LUO Honglin, YANG Dingyi, ZHOU Xingyu, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica,2019,36(8):1935-1948(in Chinese).
    [15] 高丹盈, 李晗, 杨帆. 聚丙烯-钢纤维增强高强混凝土高温性能[J]. 复合材料学报, 2013, 30(1):187-193.

    GAO Danying, LI Han, YANG Fan. High temperature performance of polypropylene-steel fiber reinforced high strength concrete[J]. Acta Materiae Compositae Sinica,2013,30(1):187-193(in Chinese).
    [16] 王裕银, 李国忠, 柏玉婷. 玉米秸秆纤维/脱硫石膏复合材料的性能[J]. 复合材料学报, 2010, 27(6):94-99.

    WANG Yuyin, LI Guozhong, BAI Yuting. Performance of corn straw fiber/desulfurization gypsum composites[J]. Acta Materiae Compositae Sinica,2010,27(6):94-99(in Chinese).
    [17] 王兰馨, 赵忠兴, 耿德军. 添加剂对石膏铸型强度的影响[J]. 沈阳理工大学学报, 2009, 6:24-27. doi: 10.3969/j.issn.1003-1251.2009.06.007

    WANG Lanxin, ZHAO Zhongxing, GENG Dejun. Influence of additives on the strength of gypsum casting[J]. Journal of Shenyang Ligong University,2009,6:24-27(in Chinese). doi: 10.3969/j.issn.1003-1251.2009.06.007
    [18] 黄韡, 姜会钰, 杨海浪. 碳纤维增强石膏的力学性能及其制备方法[J]. 武汉纺织大学学报, 2014, 27(3):74-77. doi: 10.3969/j.issn.2095-414X.2014.03.018

    HUANG Wei, JIANG Huiyu, YANG Hailang. Mechanical properties and preparation methods of carbon fiber reinforced gypsum[J]. Journal of Wuhan Textile University,2014,27(3):74-77(in Chinese). doi: 10.3969/j.issn.2095-414X.2014.03.018
    [19] 芦刚, 纪超众, 严青松, 等. 陶瓷纤维长度对复合精铸型壳抗弯强度与透气性的影响及增强行为[J]. 复合材料学报, 2017, 34(4):637-644.

    LU Gang, JI Chaozhong, YAN Qingsong, et al. Effect of ceramic fiber length on flexural strength and gas permeability of composite casting shell and its enhanced behavior[J]. Acta Materiae Compositae Sinica,2017,34(4):637-644(in Chinese).
    [20] 吕凯, 刘向东, 王浩, 等. 短切硅酸铝纤维增强硅溶胶型壳的抗弯强度及高温自重变形[J]. 材料工程, 2015, 43(7):56-61. doi: 10.11868/j.issn.1001-4381.2015.07.010

    LV Kai, LIU Xiangdong, WANG Hao, et al. Bending strength and high temperature self-weight deformation of short-cut aluminum silicate fiber reinforced silica sol shell[J]. Journal of Materials Engineering,2015,43(7):56-61(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.07.010
    [21] 郭振华. 复合纤维含量对其在石膏浆料中的分散性及石膏铸型性能的影响[D]. 南昌: 南昌航空大学, 2017.

    GUO Zhenhua. Effect of composite fiber content on its dispersibility in gypsum slurry and gypsum mold properties[D]. Nanchang: Nanchang Hangkong University, 2017(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  696
  • HTML全文浏览量:  111
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 录用日期:  2019-08-17
  • 网络出版日期:  2019-09-09
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回