留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境对复合材料蜂窝板振动特性的影响

贾宝惠 郝彤星 张刚 卢翔

贾宝惠, 郝彤星, 张刚, 等. 湿热环境对复合材料蜂窝板振动特性的影响[J]. 复合材料学报, 2020, 37(7): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20190905.001
引用本文: 贾宝惠, 郝彤星, 张刚, 等. 湿热环境对复合材料蜂窝板振动特性的影响[J]. 复合材料学报, 2020, 37(7): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20190905.001
JIA Baohui, HAO Tongxing, ZHANG Gang, et al. Effect of hygrothermal environment on vibration characteristic of composite honeycomb structure[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20190905.001
Citation: JIA Baohui, HAO Tongxing, ZHANG Gang, et al. Effect of hygrothermal environment on vibration characteristic of composite honeycomb structure[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20190905.001

湿热环境对复合材料蜂窝板振动特性的影响

doi: 10.13801/j.cnki.fhclxb.20190905.001
详细信息
    通讯作者:

    贾宝惠,硕士,教授,硕士生导师,研究方向为航空器持续适航与维修工程 E-mail:jiabaohui@sina.com

  • 中图分类号: TB330.1

Effect of hygrothermal environment on vibration characteristic of composite honeycomb structure

  • 摘要: 为了研究复合材料蜂窝板在湿热环境下的振动特性,针对由碳纤维/双马来酰亚胺复合材料层合板和Nomex芯层复合而成的蜂窝板进行了不同温湿度下固有频率的数值分析。基于分段剪切变形理论,分别考虑复合材料蜂窝薄板和厚板两种情况,利用湿度与温度的等效性,求解了复合材料蜂窝板的振动特征方程。利用有限元软件ABAQUS,建立了四端固支的复合材料蜂窝板精细化模型。分别讨论了温度、湿度、温湿度联合作用对复合材料蜂窝薄板和厚板固有频率的影响。结果表明:相比于温度的升高,复合材料蜂窝板固有频率对吸湿量的增加更为敏感;相同的湿热环境下,复合材料蜂窝厚板结构的固有频率比薄板结构大,且阶次越高,固有频率上升的幅度越大;温湿度的联合作用比它们单独作用的叠加对复合材料蜂窝板固有频率的影响更大,且在复合材料蜂窝薄板中更加明显。

     

  • 图  1  碳纤维/双马树脂复合材料面板-Nomex芯层蜂窝板示意图

    Figure  1.  Diagram of carbon fiber/bismaleimide resin-Nomex honeycomb plate

    图  2  复合材料蜂窝板分段剪切变形一维示意图

    Figure  2.  One-dimensional diagram of piecewise shear deformation of honeycomb plate

    图  3  复合材料蜂窝板精细化模型的振型示意图

    Figure  3.  Modal diagram of detailed model of composite honeycomb plate

    图  4  复合材料夹芯板在热环境下自由振动有限元模型

    Figure  4.  Finite element model of free vibration of composite sandwich plate in thermal environment

    图  5  Nomex蜂窝芯层的几何参数

    Figure  5.  Geometric parameters of Nomex honeycomb core

    图  6  碳纤维/双马来酰亚胺复合材料面板-Nomex芯层 蜂窝薄板热振动特性(吸湿量 C=0%)

    Figure  6.  Vibration characteristic of carbon fiber/bismaleimide composite plate-Nomex honeycomb thin plate(Moisture content C=0%; λ—Length-thickness ratio)

    图  7  碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝厚板热振动特性(C=0%)

    Figure  7.  Vibration characteristic of carbon fiber/bismaleimide composite plate-Nomex honeycomb thick plate(C=0%)

    图  8  温度T=300 K时碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝薄板湿振动特性

    Figure  8.  Vibration characteristic of carbon fiber/bismaleimide composite plate-Nomex honeycomb thin plate under Kelvin temperature T=300 K

    图  9  T=300 K碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝厚板湿振动特性

    Figure  9.  Humid vibration characteristic of carbon fiber/bismaleimide composite plate-Nomex honeycomb thick plate under T=300 K

    图  10  碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝板湿热振动特性

    Figure  10.  Vibration characteristic of carbon fiber/bismaleimide composite plate-Nomex honeycomb plate under hygrothermal environment

    表  1  复合材料蜂窝板前三阶固有频率

    Table  1.   The first three natural frequencies of composite honeycomb plate

    ModalNatural frequency/HzError/%
    Reference [19]FEM
    1 313.92 324.643.4
    21 107.331 072.603.1
    31 367.391 329.302.8
    Note: FEM—Numerical results of this work.
    下载: 导出CSV

    表  2  热环境下复合材料夹芯板前三阶固有频率(Hz)

    Table  2.   The first three natural frequencies of composite sandwich plate in thermal environment(Hz)

    ModalT/K273298323348
    1Reference [15]235.09204.32168.00121.26
    FEM227.78195.92157.65110.38
    Error/%3.14.16.28.9
    2Reference [15]397.25361.73322.32272.78
    FEM387.25350.88310.06262.95
    Error/%2.53.03.83.6
    3Reference [15]443.16394.62339.22277.37
    FEM439.59391.08334.93267.22
    Error/%0.80.91.33.7
    Note: T—Kelvin temperature.
    下载: 导出CSV

    表  3  碳纤维/双马来酰亚胺树脂复合材料层合板的材料性能参数

    Table  3.   Material performance parameters of carbon fiber/bismaleimide resin composite laminate

    E1/GPaE2/GPaE3/GPaμ12μ13μ23G12/GPaG13/GPaG23/GPaρ/(kg·m−3)
    1508.88.80.220.220.34.474.471.131 570
    Notes: E1, E2, E3—Young's modulus; μ12, μ13, μ23—Poisson's ratio; G12,G13,G23—Shear modulus; ρ—Density.
    下载: 导出CSV

    表  4  碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝板375 K下的前三阶固有频率值比300 K下的降低比率

    Table  4.   Decrease ratios of the first three natural frequencies of carbon fiber/bismaleimide composite plate-Nomex honeycomb plate under 375 K compared with 300 K

    ModalThin plate (λ=5.81)Thick plate (λ=3.21)
    11.46%0.81%
    21.48%0.82%
    31.48%0.81%
    下载: 导出CSV

    表  5  碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝板0.75%吸湿量时的前三阶固有频率值比0%吸湿量时的降低比率

    Table  5.   Decrease ratios of the first three natural frequencies of carbon fiber/bismaleimide composite plate-Nomex honeycomb plate under 0.75% moisture content compared with 0% moisture content

    ModalThin plate(λ=5.81)Thick plate(λ=3.21)
    11.58%0.83%
    21.61%0.84%
    31.62%0.84%
    下载: 导出CSV

    表  6  湿热环境下碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝薄/厚板前三阶固有频率

    Table  6.   The first three natural frequencies of carbon fiber/bismaleimide composite plate-Nomex honeycomb thin/thick plate under hygrothermal condition

    Environment conditionThick plate (λ=3.21)Thin plate (λ=5.81)
    T/KC/%
    Thermal environment30007 866.35 796.8
    8 460.96 209.4
    9 391.56 878.5
    32507 848.15 771.0
    8 441.46 181.4
    9 370.16 847.4
    35007 825.15 742.5
    8 416.46 150.6
    9 342.26 813.5
    37507 802.25 712.0
    8 391.86 117.6
    9 315.06 776.8
    Humid environment3000.257 844.55 766.2
    8 437.06 175.8
    9 364.66 840.8
    3000.57 823.65 735.9
    8 414.56 142.8
    9 339.76 804.0
    3000.757 801.25 705.4
    8 390.26 109.6
    9 312.66 766.9
    Hygrothermal condition3250.257 789.65 692.8
    8 377.86 096.2
    9 298.86 752.5
    3500.57 738.25 621.9
    8 322.36 019.4
    9 237.36 667.1
    3750.757 687.05 549.5
    8 267.05 941.0
    9 176.06 580.0
    Note: C —Moisture concentration.
    下载: 导出CSV

    表  7  碳纤维/双马来酰亚胺复合材料面板-Nomex芯层蜂窝板在375 K、C=0.75%下的前三阶固有频率较300 K、 C=0%时的下降比率

    Table  7.   Decrease ratios of the first three natural frequencies of carbon fiber/bismaleimide composite plate-Nomex honeycomb plate under 375 K, C=0.75% condition compared with 300 K, C=0% condition

    ModalThin plate (λ=5.81)Thick plate (λ=3.21)
    14.27%2.28%
    24.32%2.29%
    34.34%2.29%
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [3] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民航出版社, 2016.

    Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R4[S]. Beijing: China Civil Aviation Publishing House, 2016(in Chinese).
    [4] LIU Q L, ZHAO Y. Prediction of natural frequencies of a sandwich panel using thick plate theory[J]. Journal of Sandwich Structures & Materials,2001,3(4):289-309. doi: 10.1106/86XW-ER9M-N0Q6-QWU1
    [5] LIU Q L, ZHAO Y, ESLAMI H. Effect of soft honeycomb core on flexural vibration of sandwich panel[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: American Institute of Aeronautics and Astronautics, 2005.
    [6] LIU Q L, ZHAO Y. Effect of soft honeycomb core on flexural vibration of sandwich panel using low order and high order shear deformation models[J]. Journal of Sandwich Structures And Materials,2007,9(1):95-108. doi: 10.1177/1099636207070588
    [7] TANIMOTO T, NISHIWAKI T, SHIOMI T, et al. A numerical modeling for eigenvibration analysis of honeycomb sandwich panels[J]. Composite Interfaces,2001,6(8):393-402.
    [8] ZHU K G, CHEN M J, LU Q H, et al. Debonding detection of honeycomb sandwich structures using frequency response functions[J]. Journal of Sound and Vibration,2014,333(21):5299-5311. doi: 10.1016/j.jsv.2014.05.023
    [9] BURLAYENKO V N, SADOWSKI T. Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates[J]. International Journal of Non-Linear Mechanics,2010,45(10):959-968. doi: 10.1016/j.ijnonlinmec.2009.07.002
    [10] YEO E S Y, WANG J, MIRABELLA L, et al. Effect of humidity and thermal cycling on carbon-epoxy skin/aramid honeycomb structure[J]. Materials Science Forum,2010,654-656:2600-2603.
    [11] CHEN Z, YAN N, DENG J, et al. Influence of environmental humidity and temperature on the creep behavior of sandwich panel[J]. International Journal of Mechanical Sciences,2017,134:216-223. doi: 10.1016/j.ijmecsci.2017.10.013
    [12] PADHI A, PANDIT M K. Bending and free vibration response of sandwich laminate under hygrothermal load using improved zigzag theory[J]. Journal of Strain Analysis,2017,52(5):288-297. doi: 10.1177/0309324717714710
    [13] 李向阳, 蒋莉, 张志民. 湿热环境对损伤分层复合材料夹层板屈曲性能的影响[J]. 复合材料学报, 2000, 17(4):110-113. doi: 10.3321/j.issn:1000-3851.2000.04.023

    LI Xiangyang, JIANG Li, ZHANG Zhimin. Hygrothermal effect on buckling of composite sandwich with delamination[J]. Acta Materiae Compositae Sinica,2000,17(4):110-113(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.04.023
    [14] LI X Y, YU K P, HAN J Y, et al. A piecewise shear deformation theory for free vibration of composite and sandwich panels[J]. Composite Structures,2015,124:111-119. doi: 10.1016/j.compstruct.2015.01.007
    [15] LI X Y, YU K P. Vibration and acoustic responses of composite and sandwich panels under thermal environment[J]. Composite Structures,2015,131:1040-1049. doi: 10.1016/j.compstruct.2015.06.037
    [16] ZHAO R, YU K P, HULBERT G M, et al. Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments[J]. Composite Structures,2017,160:1060-1083. doi: 10.1016/j.compstruct.2016.10.103
    [17] 胡建平, 蔡吉喆, 肇研, 等. 湿热环境对蜂窝夹层复合材料性能的影响[J]. 材料工程, 2010, 20(11):43-47. doi: 10.3969/j.issn.1001-4381.2010.11.011

    HU Jianping, CAI Jizhe, ZHAO Yan, et al. Effects of hygrothermal environment on properties of nomex sandwich composite[J]. Journal of Materials Engineering,2010,20(11):43-47(in Chinese). doi: 10.3969/j.issn.1001-4381.2010.11.011
    [18] 白云鹤, 于开平, 赵锐, 等. 高温与脱粘对复合材料蜂窝板模态特性影响的试验[J]. 复合材料学报, 2018, 35(4):885-895.

    BAI Yunhe, YU Kaiping, ZHAO Rui, et al. Experimental investigation on the effects of the high temperature and debonding on the modal characteristics of the composite honeycomb structure[J]. Acta Materiae Compositae Sinica,2018,35(4):885-895(in Chinese).
    [19] 东巳宙. 高温环境下复合材料层合板与蜂窝板力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    DONG Sizhou. The analysis of mechanical proper-ties on composite laminated plate and honeycomb plate under the environment of high temperature[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [20] BAI Y H, YU K P, ZHAO J, et al. Experimental and simulation investigate on of temperature effects on modal characteristics of composite honeycomb structure[J]. Composite Structures,2018,201:816-827. doi: 10.1016/j.compstruct.2018.06.106
    [21] JIANG D, ZHANG D H, FEI Q G, et al. An approach on identification of equivalent properties of honeycomb core using experimental modal data[J]. Finite Elements in Analysis and Design,2014,90:84-92. doi: 10.1016/j.finel.2014.06.006
    [22] 刘健, 周春燕. 长厚比对正六边形铝蜂窝夹层板等效板模型动力学计算精度的影响[J]. 复合材料学报, 2016, 33(8):1838-1847.

    LIU Jian, ZHOU Chunyan. Influence of length-thickness ratio on dynamics calculation accuracy of equivalent plate model of hexagonal aluminum honeycomb sandwich plate[J]. Acta Materiae Compositae Sinica,2016,33(8):1838-1847(in Chinese).
    [23] 韩敬永, 于开平, 宋海洋, 等. 整流罩声振试验蜂窝夹层板建模方法[J]. 噪声与振动控制, 2015, 35(5):65-68.

    HAN Jingyong, YU Kaiping, SONG Haiyang, et al. Study on the modeling methods of honeycomb sandwich panels based on fairing vibroacoustic experiments[J]. Noise and Vibration Control,2015,35(5):65-68(in Chinese).
    [24] 黄克智, 夏之熙, 薛明德, 等. 板壳理论[M]. 北京: 清华大学出版社, 1987.

    HUANG Kezhi, XIA Zhixi, XUE Mingde, et al. Theory of plate and shell[M]. Beijing: Tsinghua University Press, 1987(in Chinese).
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  963
  • HTML全文浏览量:  202
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-12
  • 录用日期:  2019-09-02
  • 网络出版日期:  2019-09-06
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回