留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响

阳雄南 张效林 聂孙建 王哲 卓光铭 李少歌

阳雄南, 张效林, 聂孙建, 等. 不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002
引用本文: 阳雄南, 张效林, 聂孙建, 等. 不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002
YANG Xiongnan, ZHANG Xiaolin, NIE Sunjian, et al. Effect of different enzyme modification on properties of wheat straw fiber/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002
Citation: YANG Xiongnan, ZHANG Xiaolin, NIE Sunjian, et al. Effect of different enzyme modification on properties of wheat straw fiber/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1033-1040. doi: 10.13801/j.cnki.fhclxb.20190902.002

不同生物酶改性处理对麦秸秆纤维/高密度聚乙烯复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20190902.002
基金项目: 陕西省自然科学基金(2015JM3080);安徽省重大科技专项子题(17030701019)
详细信息
    通讯作者:

    张效林,博士,副教授,硕士生导师,研究方向为天然纤维复合材料 E-mail:zxlbmm@sina.com

  • 中图分类号: TB332

Effect of different enzyme modification on properties of wheat straw fiber/high density polyethylene composites

  • 摘要: 以麦秸秆纤维(WF)和高密度聚乙烯(HDPE)为原料,利用混炼和注塑成型的方法制备WF/HDPE复合材料。考察了木聚糖酶、漆酶、脂肪酶、木聚糖酶与脂肪酶复合处理对WF/HDPE复合材料力学性能、热稳定性、吸水率的影响,通过FTIR分析了酶处理前后的WF化学官能团变化,利用SEM观察了酶处理前后的WF表面形貌和WF/HDPE复合材料拉伸断裂面。结果表明:当WF/HDPE复合材料经木聚糖酶与脂肪酶复合处理后,吸水率最低且WF/HDPE复合材料的力学性能最好,其拉伸强度、弯曲强度、弯曲模量分别达到23.4 MPa、34.0 MPa、1 944.6 MPa;TG结果表明WF/HDPE的热分解过程分两个部分:WF的分解过程和HDPE的分解过程,酶能有效提高WF/HDPE的热稳定性;FTIR显示经酶处理后,WF的羟基振动峰微弱减小,在1 706~1 290 cm−1处光谱上出现部分小峰,SiO2的振动峰变得平缓;SEM显示经酶处理后,WF表面变粗糙,WF与HDPE结合紧密,其中经木聚糖酶和脂肪酶共同处理后两者界面结合性能最好。

     

  • 图  1  不同生物酶处理的WF的SEM图像

    Figure  1.  SEM images of WF processed by different enzymes ((a)WF; (b)WFx; (c)WFi; (d)WFa; (e)WFm)

    图  2  经各种生物酶改性前后的WF的FTIR图谱

    Figure  2.  FTIR spectra of WF before and after modification by various enzymes

    图  3  不同生物酶处理前后的WF/HDPE的拉伸强度

    Figure  3.  Tensile strengths of WF/HDPE before and after different enzyme treatments

    图  4  不同生物酶处理前后的WF/HDPE的弯曲性能

    Figure  4.  Bending properties of WF/HDPE before and after different enzyme treatments

    图  5  HDPE和不同生物酶处理的WF/HDPE复合材料的TG曲线

    Figure  5.  TG curves of HDPE and WF/HDPE treated with different enzymes

    图  6  不同生物酶处理前后WF/HDPE复合材料的吸水性能

    Figure  6.  Water absorption properties of WF/HDPE composites prepared by different enzyme treatments

    图  7  不同生物酶处理前后的WF/HDPE复合材料的SEM图像

    Figure  7.  SEM images of WF/HDPE composites prepared by different enzymes ((a) WF/HDPE; (b) WFx/HDPE; (c) WFi/HDPE; (d) WFa/HDPE; (e)WFm/HDPE)

    表  1  不同生物酶处理的麦秸秆纤维/高密度聚乙烯(WF/HDPE)复合材料原材料配方分组

    Table  1.   Prescription of wheat straw fiber/high density polyethylene(WF/HDPE) composition treated with different enzymes

    No.Enzyme quantity/gEnhancer content/wt%Matrix content/wt%
    XylanaseLipaseLaccaseWFHDPE
    WF/HDPE3070
    WFx/HDPE0.353070
    WFi/HDPE0.73070
    WFa/HDPE0.353070
    WFm/HDPE0.350.73070
    Notes: WF—Untreated WF; WFx—Treated by xylanase; WFi—Treated by lipase; WFa—Treated by laccase; WFm—Treated by xylanase and lipase.
    下载: 导出CSV

    表  2  处理、未处理WF/HDPE复合材料及HDPE样品的热稳定性

    Table  2.   Thermal stabilities of modified, unmodified WF/HDPE composites and HDPE samples

    SampleT5/℃TP/℃Char at
    TP1TP2600℃/%
    HDPE437495 2.1
    WF/HDPE27635049011.5
    WFx/HDPE31536049010.1
    WFm/HDPE32237050010.8
    WFa/HDPE32636049010.4
    WFi/HDPE31135049010.5
    Notes: T5—Temperature of heat loss of 5%; TP1—Fastest thermal decomposition temperature in the first stage; TP2—Fastest thermal decomposition temperature in the second stage; Char at 600℃—Solid residue at 600℃.
    下载: 导出CSV
  • [1] 杨雪慧, 汤丽娟, 章蓉, 等. 农作物秸秆表面改性处理的研究进展[J]. 南京林业大学学报(自然科学版), 2013, 37(3):157-162.

    YANG Xuehui, TANG Lijuan, ZHANG Rong, et al. Research progress on surface modification of crop straw[J]. Journal of Nanjing Forestry University (Natural Science Edition),2013,37(3):157-162(in Chinese).
    [2] 陈政豪, 李锦琦, 田兰馨, 等. 秸塑复合材料界面改性研究现状与展望[J]. 木材加工机械, 2017, 28(3):41-48.

    CHEN Zhenghao, LI Jinqi, TIAN Lanxin, et al. Research status and prospect of interface modification of straw-plastic composites[J]. Wood Processing Machinery,2017,28(3):41-48(in Chinese).
    [3] 丛龙康, 张效林. 秸秆纤维增强热塑性树脂基复合材料界面改性研究新进展[J]. 化工进展, 2015, 34(11):3970-3974.

    CONG Longkang, ZHANG Xiaolin. Recent progress in research on interface modification of straw fiber reinforced thermoplastic resin matrix composites[J]. Chemical Progress,2015,34(11):3970-3974(in Chinese).
    [4] 聂孙建, 张效林, 丛龙康, 等. 界面改性对麦秸秆纤维/聚乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1783-1790.

    NIE Sunjian, ZHANG Xiaolin, CONG Longkang, et al. Effect of interface modification on properties of wheat straw fiber/polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1783-1790(in Chinese).
    [5] MAMUN A A. Micro fibre reinforced PLA and PP composites: Enzyme modification, mechanical and thermal properties[J]. Composites Science & Technology,2013,78(2):10-17.
    [6] 陈云, 张喜燕, 雷亚芳, 等. 麦秸的微观构造及化学成分分析[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2):179-183, 190.

    CHEN Yun, ZHANG Xiyan, LEI Yafang, et al. Microstructure and chemical composition analysis of wheat straw[J]. Journal of Northwest University of Agriculture and Forestry Science and Technology (Natural Science Edition),2015,43(2):179-183, 190(in Chinese).
    [7] 伍波, 张求慧, 王永波. 木塑复合材料界面化学改性研究进展[J]. 化工新型材料, 2010, 38(5):28-30. doi: 10.3969/j.issn.1006-3536.2010.05.009

    WU Bo, ZHANG Qiuhui, WANG Yongbo. Research progress on interfacial chemical modification of wood-plastic composites[J]. New Chemical Materials,2010,38(5):28-30(in Chinese). doi: 10.3969/j.issn.1006-3536.2010.05.009
    [8] JAUHARI N, MISHRA R, THAKUR H. Natural fibre reinforced composite laminates : A review[J]. Materials Today: Proceedings,2015,2(4-5):2868-2877. doi: 10.1016/j.matpr.2015.07.304
    [9] ZHOU Y, FAN M, CHEN L. Interface and bonding mechanisms of plant fibre composites: An overview[J]. Composites Part B: Engineering,2016,101:31-45. doi: 10.1016/j.compositesb.2016.06.055
    [10] 余贞梅. 木粉、玉米秸秆改性聚烯烃基木塑复合3D打印材料研究[D]. 长沙: 湖南大学, 2017.

    YU Zhenmei. Study on 3D printing materials of wood flour and corn straw modified polyolefin-based wood-plastic composites[D]. Changsha: Hunan University, 2017(in Chinese).
    [11] 严婷婷, 史凯欣, 易鹏, 等. 秸秆/合成橡胶复合材料的界面改性及性能研究[J]. 森林工程, 2017, 33(3):48-52. doi: 10.3969/j.issn.1006-8023.2017.03.011

    YAN Tingting, SHI Kaixin, YI Peng, et al. Interface modification and properties of straw/synthetic rubber composites[J]. Forest Engineering,2017,33(3):48-52(in Chinese). doi: 10.3969/j.issn.1006-8023.2017.03.011
    [12] 江华, 张洋, 王雪飞. 脂肪酶对麦秸亲脂类抽提物的影响[J]. 南京林业大学学报(自然科学版), 2010, 34(3):25-30. doi: 10.3969/j.issn.1000-2006.2010.03.006

    JIANG Hua, ZHANG Yang, WANG Xuefei. Effects of lipase on lipophilic extracts from wheat straw[J]. Journal of Nanjing Forestry University (Natural Science Edition),2010,34(3):25-30(in Chinese). doi: 10.3969/j.issn.1000-2006.2010.03.006
    [13] ZOU Y, HUDA S, YANG Y. Lightweight composites from long wheat straw and polypropylene web[J]. Bioresource Technology,2010,101(6):2026-2033. doi: 10.1016/j.biortech.2009.10.042
    [14] LU Fang, LIANG Chang, GUO Wenjing, et al. Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood[J]. Applied Surface Science,2014,288:682-689. doi: 10.1016/j.apsusc.2013.10.098
    [15] YANG S, BAI S, WANG Q. Sustainable packaging biocomposites from Polylactic acid and wheat straw: Enhanced physical performance by solid state shear milling process[J]. Composites Science and Technology,2017,158:34-42.
    [16] KELLERSZTEIN I, SHANI U, ZILBER I, et al. Sustainable composites from agricultural waste: The use of steam explosion and surface modification to potentialize the use of wheat straw fibers for wood plastic composite industry[J]. Polymer Composites,2017,40(S1):E53-E61.
    [17] 安红玉, 杨建忠, 郭昌盛. 纤维素的改性技术研究进展[J]. 成都纺织高等专科学校学报, 2016, 33(3):160-163.

    AN Hongyu, YANG Jianzhong, GUO Changsheng. Progress in cellulose modification technology[J]. Journal of Chengdu Textile College,2016,33(3):160-163(in Chinese).
    [18] 周亚巍, 宁莉萍, 王燕高, 等. 木聚糖酶处理对西南桦木/HDPE复合材料性能的影响[J]. 复合材料学报, 2014, 31(2):338-344.

    ZHOU Yawei, NING Liping, WANG Yangao, et al. Effects of xylanase treatment on properties of southwestern birch/HDPE composites[J]. Acta Materiae Compositae Sinica,2014,31(2):338-344(in Chinese).
    [19] 张亚卓. 漆酶预处理制备麦秸无胶纤维板工艺研究[D]. 北京: 北京林业大学, 2012.

    ZHANG Yazhuo. Study on the technology of preparing wheat straw glue-free fiberboard by laccase pretreatment[D]. Beijing: Beijing Forestry University, 2012(in Chinese).
    [20] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    China National Standardization Administration Committee. Test method for tensile properties of fiber reinforced plastics: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [21] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    China National Standardization Administration Committee. Test method for flexural properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [22] 国家质量技术监督局.人造板及饰面人造板理化性能试验方法: GB/T 17657—1999[S].北京: 中国标准出版社, 1999.

    State Bureau of Quality and Technical Supervision. Test methods for physical and chemical properties of wood-based panels and veneered panels: GB/T 17657—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [23] KALIA S, THAKUR K, KUMAR A, et al. Laccase-assisted surface functionalization of lignocellulosics[J]. Journal of Molecular Catalysis B: Enzymatic,2014,102:48-58. doi: 10.1016/j.molcatb.2014.01.014
    [24] DWIVEDI U N, SINGH P, PANDEY V P, et al. Structure–function relationship among bacterial, fungal and plant laccases[J]. Journal of Molecular Catalysis B Enzymatic,2011,68(02):117-128. doi: 10.1016/j.molcatb.2010.11.002
    [25] 杨少杰, 高海有, 李晞, 等. 甘露聚糖酶和木聚糖酶在纸浆漂白中的应用[J]. 造纸科学与技术, 2016, 35(4):71-76.

    YANG Shaojie, GAO Haiyou, LI Xi, et al. Application of mannanase and xylanase in pulp bleaching[J]. Paper Science and Technology,2016,35(4):71-76(in Chinese).
    [26] KALIA S, THAKUR K, CELLI A, et al. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review[J]. Journal of Environmental Chemical Engineering,2013,1(3):97-112. doi: 10.1016/j.jece.2013.04.009
    [27] DEREWENDA Z S. Structure and function of lipases[J]. Advances in Protein Chemistry,1994,45(1):1-52.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  100
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 录用日期:  2019-08-11
  • 网络出版日期:  2019-09-03
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回