留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性可穿戴碲化铋基热电器件的研究进展

张彤 李杰 叶施莹 吴凯 任松 方剑

张彤, 李杰, 叶施莹, 等. 柔性可穿戴碲化铋基热电器件的研究进展[J]. 复合材料学报, 2024, 41(7): 3519-3528.
引用本文: 张彤, 李杰, 叶施莹, 等. 柔性可穿戴碲化铋基热电器件的研究进展[J]. 复合材料学报, 2024, 41(7): 3519-3528.
ZHANG Tong, LI Jie, YE Shiying, et al. Advances in flexible wearable bismuth telluride-based Materials thermoelectric devices[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3519-3528.
Citation: ZHANG Tong, LI Jie, YE Shiying, et al. Advances in flexible wearable bismuth telluride-based Materials thermoelectric devices[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3519-3528.

柔性可穿戴碲化铋基热电器件的研究进展

基金项目: 江苏省市场监督管理局科技计划项目(KJ2023023);国家自然科学基金面上项目(52173059) ;江苏省高校自然科学研究项目重大项目(21KJA540002)
详细信息
    通讯作者:

    方剑,博士,教授,博士生导师,研究方向为电活性纤维材料和柔性智能可穿戴纺织品 E-mail:jian.fang@suda.edu.cn

  • 中图分类号: TB332

Advances in flexible wearable bismuth telluride-based Materials thermoelectric devices

Funds: Science and Technology Program of Jiangsu Administration for Market Regulation (No. KJ2023023); National Natural Science Foundation of China (52173059); The Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (21KJA540002)
  • 摘要: 随着全球能源的消耗加剧,热电器件的开发应用成为解决能源消耗问题的有效途径之一,其中,碲化铋(Bi2Te3)基柔性热电器件因在可穿戴领域逐步实现应用,得到了学界和业界的广泛关注。然而,受其材料成本较高、刚性结构等多方面因素的限制,Bi2Te3基柔性热电器件难以在保持高效热电性能的同时,实现柔性可穿戴化应用。本文系统地阐述了当前Bi2Te3基柔性热电器件在材料复合与柔性结构设计上的研究进展,特别是在柔性结构设计上,涵盖了块状、膜类以及纱线型三种结构。最后,总结分析了Bi2Te3柔性热电器件未来可能面临的挑战与发展趋势,以期促进热电器件在可穿戴领域实现广泛应用。

     

  • 图  1  三种不同形态的Bi2Te3基柔性热电器件

    Figure  1.  Three different forms of bismuth telluride-based flexible thermoelectric devices

    图  2  (a) TEG结构图及其设备应用的照片[30]; (b)完成的器件结构图[6]

    Figure  2.  (a) the structure of TEG and its applications[30]; (b) Structure of the TEG[6]

    TEG—Flexible thermoelectric generator

    图  3  (a) f-TEG的制造工艺[20]; (b) TEG实样图[46]; (c)热电器件结构图[44];(d)中空结构器件结构图[45] ; (e)中空结构器件在手指表面的弯曲图[45]

    Figure  3.  (a) Manufacturing process of f-TEG[20]; (b) TEG sample drawing[46]; (c) Structure of the TEG[44]; (d) Structure of the Hollow Structure Device[45]; (e) Bending diagram of a hollow structure device on the surface of a finger[45]

    图  4  (a)带有太阳能吸收器的热电器件示意图[58];(b)可拉伸器件的设计图[59]

    Figure  4.  (a) Schematic diagram of a thermoelectric device with solar absorber[58] ; (b) Design drawings of stretchable devices[59]

    图  5  (a)锯齿形针迹; (b)袜型针迹; (c)平纹针迹[60]; (d)弯曲状态下的纱线型热电器件[61]; (e)1米×15.5厘米的织物[62]

    Figure  5.  (a) serrated stitch; (b) sock needle; (c) plain stitch[60]; (d) Yarn TEG in bent conditions[61]; (e) 1 meter × 15.5 cm fabric [62]

    表  1  Bi2Te3基热电器件应用总结

    Table  1.   Summary of Bismuth Telluride-based Thermoelectric Device Applications

    Device type TE Materials Substance* input
    voltage/mV
    Power Factor/
    μW/mK2
    Power density/
    µW/cm2
    Seebeck
    coefficient/
    μV/K
    Ref.
    Flexible ingot-shaped thermoelectric devices Single-Walled
    Carbon Nanotubes (SWCNT)
    Bi2Te3
    / 23
    (135 K)
    891.6
    (340 K)
    / / [16]
    Bi0.5Te1.5Te3
    (P-Type)
    Bi2Te2.8Se0.2
    (N-Type)
    Polyimide film
    (PIF)
    2800-3300
    (body temperature)
    / 3.5 / [20]
    Bi0.5Sb1.5Te3
    (P-Type)
    Bi2Se0.3Te2.7
    (N-Type)
    Flexible Printed Circuit Board
    (FPCB)
    63 / 8.68 / [44]
    Bi0.5Sb1.5Te3
    (P-Type)
    Bi2Se0.5Te2.5
    (N-Type)
    Flexible Printed Circuit Board
    (FPCB)
    5.35 / 4.75 / [45]
    Carbon Nanotubes
    (CNTs)
    P,N Bi2Te3
    Polydimethylsiloxane
    (PDMS)
    920 / 570 / [46]
    Flexible film-shaped thermoelectric devices Bi2Te3
    Polyvinylidene Fluoride
    (PVDF)
    Polyethylene terephthalate
    (PET)
    2.3
    (natural exhalation)
    133(P)
    124 (N)
    / / [6]
    N bismuth telluride(Graphene)
    P bismuth telluride
    (SWCNT)
    Polyimide
    (PI)
    23
    (135 K)
    55
    (P)
    108
    (N)
    / / [30]
    Bi2Te3
    PEDOT:PSS
    Dimethyl sulfoxide
    (DMSO)
    / / / / 45 ± 2.1 [40]
    Bi2Te3 AIN / 1130 / / [48]
    Bi2Te3 MASnI3 / / / / [49]
    Bi2Te3 Polyimide film
    (PIF)
    155.1
    (46℃)
    / 2530 / [55]
    Bi0.4Sb1.6Te3
    (P-Type)
    Bi2Se0.3Te2
    (N-Type)
    Polyimide film
    (PIF)
    55.15
    (AM 1.5 G)
    / / 166.37
    (P)
    −116.38
    (N)
    [56]
    Bi2Te3 Ecoflex / / 150 / [57]
    Flexible yarn-shaped thermoelectric devices Bi2Te3
    Polyvinyl pyrrolidone(PVP)
    / / / / 3062 [32]
    Bi2Te3-
    Sb2Te3-PAN
    / 15.8
    14.8.
    11.9
    / 62
    11
    9
    / [60]
    Bi0.4Sb1.3Te3
    (P-Type)
    Bi2Te3.3Se0.2
    (N-Type)
    Polyimide Filament
    Polydimethylsiloxane
    (PDMS)
    / / 58 / [61]
    Bi2Te3 Extreme filaments
    Poly (3,4-ethylenedioxythiophene)-poly(PEDOT)
    / / 613
    (25 K)
    / [62]
    Notes:Input voltage is the voltage produced by a device at a certain temperature;Power factor is the ratio of the power dissipated to the product of the input volts times amps;Power density is the power generated per square centimeter of the TEG;Seebeck coefficient is defined as follows: S=−ΔVT with S being the Seebeck coefficient, ΔT the temperature difference between the ends of the material, and ΔV the potential difference.
    下载: 导出CSV
  • [1] CHEN X, LI C, GRäTZEL M, et al. Nanomaterials for renewable energy production and storage[J]. Chemistry Society Reviews, 2012, 41(23): 7909-7937. doi: 10.1039/c2cs35230c
    [2] CONTI J, HOLTBERG P, DIEFENDERFER J, et al. International energy outlook 2016 with projections to 2040 [R]. USDOE Energy Information Administration (EIA), Washington, DC (United States)…, 2016.
    [3] ARISTOV Y I. Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues[J]. Energy, 2021, 236: 121892. doi: 10.1016/j.energy.2021.121892
    [4] UCHIDA K, TAKAHASHI S, HARII K, et al. Observation of the spin Seebeck effect[J]. Nature, 2008, 455(7214): 778-781. doi: 10.1038/nature07321
    [5] DREBUSHCHAK V. The peltier effect[J]. Journal of Thermal Analysis and Calorimetry, 2008, 91: 311-315. doi: 10.1007/s10973-007-8336-9
    [6] NA Y, KIM S, MALLEM S P R, et al. Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite[J]. Journal of Alloys and Compounds, 2022, 924: 166575. doi: 10.1016/j.jallcom.2022.166575
    [7] HOU W, NIE X, ZHAO W, et al. Fabrication and excellent performances of Bi0. 5Sb1. 5Te3/epoxy flexible thermoelectric cooling devices[J]. Nano Energy, 2018, 50: 766-776.
    [8] DAI X, WANG Y, LI K, et al. Joint-free single-piece flexible thermoelectric devices with ultrahigh resolution p–n patterns toward energy harvesting and solid-state cooling[J]. ACS Energy Letters, 2021, 6(12): 4355-4364. doi: 10.1021/acsenergylett.1c02005
    [9] GAO F-L, MIN P, GAO X-Z, et al. Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT: PSS and carbon nanotubes for human energy harvesting and electronic-skin[J]. Journal of Materials Chemistry A, 2022, 10(35): 18256-18266. doi: 10.1039/D2TA04862K
    [10] LIU Y, YIN L, ZHANG W, et al. A wearable real-time power supply with a Mg3Bi2-based thermoelectric module[J]. Cell Reports Physical Science, 2021, 2(6): 100445 doi: 10.1016/j.xcrp.2021.100445
    [11] KONG D, ZHU W, GUO Z, et al. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting[J]. Energy, 2019, 175: 292-299. doi: 10.1016/j.energy.2019.03.060
    [12] KIM S J, LEE H E, CHOI H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process[J]. ACS Nano, 2016, 10(12): 10851-10857. doi: 10.1021/acsnano.6b05004
    [13] LIU Z, TIAN B, LI Y, et al. Evolution of Thermoelectric Generators: From Application to Hybridization[J]. Nano Micro Small, 2023: 2304599.
    [14] HUANG L, LIN S, XU Z, et al. Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting[J]. Advanced in Materials, 2019, 32(5): 1902034
    [15] 李佳. 石墨烯/碲化铋/PEDOT: PSS纳米复合热电材料的制备与性能探究 [D]; 上海应用技术大学, 2020.

    LI J. Preparation and Thermoelectric Properties of Graphene/Bi2Te3/ PEDOT: PSS Nanocomposite Thermoelectric Materials [D]. Shanghai Institute of Technology, 2020(in Chinese).
    [16] LIU Y, DU Y, MENG Q, et al. Effects of preparation methods on the thermoelectric performance of SWCNT/Bi2Te3 bulk composites[J]. Materials, 2020, 13(11): 2636. doi: 10.3390/ma13112636
    [17] KIM J, BAE E J, KANG Y H, et al. Elastic thermoelectric sponge for pressure-induced enhancement of power generation[J]. Nano Energy, 2020, 74: 104824. doi: 10.1016/j.nanoen.2020.104824
    [18] JUNG K K, JUNG Y, CHOI C J, et al. Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate[J]. Current Applied Physics, 2016, 16(10): 1442-1448. doi: 10.1016/j.cap.2016.08.010
    [19] ZHANG Z, WANG B, QIU J, et al. Roll-to-roll printing of spatial wearable thermoelectrics[J]. Manufacturing Letters, 2019, 21: 28-34. doi: 10.1016/j.mfglet.2019.07.002
    [20] YUAN J, ZHU R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator[J]. Applied energy, 2020, 271: 115250. doi: 10.1016/j.apenergy.2020.115250
    [21] BUBNOVA O, KHAN Z U, MALTI A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene)[J]. Nature materials, 2011, 10(6): 429-433. doi: 10.1038/nmat3012
    [22] 张洪银, 莫政宇. 热电材料ZT值的测量研究[J]. 内燃机与配件, 2023, (4): 94-6. doi: 10.3969/j.issn.1674-957X.2023.04.030

    ZHANG H, MO Z. Measurement of ZT values of thermoelectric materials[J]. Internal Combustion Engine & Parts, 2023, (4): 94-6(in Chinese). doi: 10.3969/j.issn.1674-957X.2023.04.030
    [23] SINGH D, KUTBEE A T, GHONEIM M T, et al. Strain-Induced Rolled Thin Films for Lightweight Tubular Thermoelectric Generators[J]. Advanced Materials Technologies, 2018, 3(1): 1700192. doi: 10.1002/admt.201700192
    [24] PEI J, CAI B, ZHUANG H-L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges[J]. National science review, 2020, 7(12): 1856-1858. doi: 10.1093/nsr/nwaa259
    [25] TANG X, LI Z, LIU W, et al. A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond[J]. Interdisciplinary Materials, 2022, 1(1): 88-115. doi: 10.1002/idm2.12009
    [26] CHEN Y, HOU X, MA C, et al. Review of development status of Bi2Te3-based semiconductor thermoelectric power generation[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-9.
    [27] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science advances, 2019, 5(5): 0536.
    [28] WU B, GUO Y, HOU C, et al. From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators[J]. Nano Energy, 2021, 89: 106487. doi: 10.1016/j.nanoen.2021.106487
    [29] GUO Z, YU Y, ZHU W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application[J]. Advanced Energy Materials, 2022, 12(5): 2102993. doi: 10.1002/aenm.202102993
    [30] WU B, GUO Y, HOU C, et al. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat[J]. Advanced Functional Materials, 2019, 29(25): 1900304. doi: 10.1002/adfm.201900304
    [31] AWASTHI R, MANCHANDA S, DAS P, et al. Poly(vinylpyrrolidone) [M]. Engineering of Biomaterials for Drug Delivery Systems. 2018: 255-272.
    [32] AKRAM R, KHAN J S, QAMAR Z, et al. Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi 2 Te 3 nanofibers by electrospinning[J]. Journal of Materials Science, 2022: 1-13.
    [33] WANG X, MENG F, WANG T, et al. High performance of PEDOT: PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting[J]. Journal of Alloys and Compounds, 2018, 734: 121-129. doi: 10.1016/j.jallcom.2017.11.013
    [34] FAN X, NIE W, TSAI H, et al. PEDOT: PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications[J]. Advanced Science, 2019, 6(19): 1900813. doi: 10.1002/advs.201900813
    [35] DU Y, SHEN S Z, CAI K, et al. Research progress on polymer–inorganic thermoelectric nanocomposite materials[J]. Progress in Polymer Science, 2012, 37(6): 820-841. doi: 10.1016/j.progpolymsci.2011.11.003
    [36] CHEN Y, ZHAO Y, LIANG Z J E, et al. Solution processed organic thermoelectrics: towards flexible thermoelectric modules[J]. Physics Energy and Environmental Science, 2015, 8(2): 401-422. doi: 10.1039/C4EE03297G
    [37] FAN Z, LI P, DU D, et al. Significantly enhanced thermoelectric properties of PEDOT: PSS films through sequential post-treatments with common acids and bases[J]. Advanced Energy Materials, 2017, 7(8): 1602116. doi: 10.1002/aenm.201602116
    [38] KIM G-H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12(8): 719-723. doi: 10.1038/nmat3635
    [39] DU Y, CAI K, SHEN S Z, et al. Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer[J]. RSC advances, 2017, 7(69): 43737-43742. doi: 10.1039/C7RA08663F
    [40] KIM W S, ANOOP G, JEONG I S, et al. Feasible tuning of barrier energy in PEDOT: PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing[J]. Nano Energy, 2020, 67: 104207. doi: 10.1016/j.nanoen.2019.104207
    [41] ZHOU C, DUN C, GE B, et al. Highly robust and flexible n-type thermoelectric film based on Ag2Te nanoshuttle/polyvinylidene fluoride hybrids[J]. Nanoscale, 2018, 10 31: 14830-14834.
    [42] DUN C, HEWITT C A, HUANG H, et al. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics[J]. ACS applied materials & interfaces, 2015, 7 13: 7054-7059.
    [43] ZHAO Y, FU X, LIU B, et al. Ultra-stretchable hydrogel thermocouples for intelligent wearables[J]. Science China Materials, 2023: 1-7.
    [44] KIM J, KHAN S, WU P, et al. Self-charging wearables for continuous health monitoring[J]. Nano Energy, 2021, 79: 105419. doi: 10.1016/j.nanoen.2020.105419
    [45] SHI Y, WANG Y, MEI D, et al. Design and fabrication of wearable thermoelectric generator device for heat harvesting[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 373-378.
    [46] JUNG K K, JUNG Y, CHOI C J, et al. Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate[J]. Current Applied Physics, 2016, 16(10): 1442-1448. doi: 10.1016/j.cap.2016.08.010
    [47] YU Y, ZHU W, KONG X, et al. Recent development and application of thin-film thermoelectric cooler[J]. Frontiers of Chemical Science and Engineering, 2020, 14: 492-503.
    [48] AHMED A, HAN S J S R. Fabrication, micro-structure characteristics and transport properties of co-evaporated thin films of Bi2Te3 on AlN coated stainless steel foils[J]. Scientific Reports, 2021, 11(1): 4041. doi: 10.1038/s41598-021-83476-7
    [49] MORIMOTO M, KAWANO S, MIYAMOTO S, et al. Electronic structure and thermal conductance of the MASnI3/Bi2Te3 interface: a first-principles study[J]. Scientific Reports, 2022, 12(1): 217. doi: 10.1038/s41598-021-04234-3
    [50] GHASEMI A, KEPAPTSOGLOU D, GALINDO P L, et al. Van der Waals epitaxy between the highly lattice mismatched Cu-doped FeSe and Bi2Te3[J]. NPG Asia Materials, 2017, 9(7): e402-e402. doi: 10.1038/am.2017.111
    [51] HE Q L, LIU H, HE M, et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure[J]. Nature communications, 2014, 5(1): 4247. doi: 10.1038/ncomms5247
    [52] NI Y, SUN B, LI J, et al. Thermal transport in Bi2Te3-PbTe segmented thermoelectric nanofilms[J]. Chinese Journal of Physics, 2022, 75: 199-205. doi: 10.1016/j.cjph.2021.11.032
    [53] HUANG C, LIU J, ZHAO L, et al. Advances in atomic oxygen resistant polyimide composite films[J]. Composites Part A: Applied Science and Manufacturing, 2023: 107459.
    [54] CAO Z, KOUKHARENKO E, TUDOR M, et al. Flexible screen printed thermoelectric generator with enhanced processes and materials[J]. Sensors and Actuators A:Physical, 2016, 238: 196-206. doi: 10.1016/j.sna.2015.12.016
    [55] 杨龙, 尤汉, 唐可琛, et al. Bi2Te3柔性热电器件的制备与发电性能研究[J]. 传感器与微系统, 2021, 40(10): 14-16,20.

    YANG L, YOU H, TANG K, et al. Research on preparation and power generation performance of Bi2Te3 flexible thermoelectric device[J]. Transducer and Microsystem Technologies, 2021, 40(10): 14-16,20(in Chinese).
    [56] JUNG Y S, JEONG D H, KANG S B, et al. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference[J]. Nano energy, 2017, 40: 663-672. doi: 10.1016/j.nanoen.2017.08.061
    [57] YANG Y, HU H, CHEN Z, et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces[J]. Nano letters, 2020, 20(6): 4445-4453. doi: 10.1021/acs.nanolett.0c01225
    [58] JUNG Y S, JEONG D H, KANG S B, et al. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference[J]. Nano Energy, 2017, 40: 663-672. doi: 10.1016/j.nanoen.2017.08.061
    [59] YANG Y, HU H, CHEN Z, et al. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces[J]. Nano letters, 2020, 20: 6,4445-4453
    [60] LEE J A, ALIEV A E, BYKOVA J S, et al. Woven-yarn thermoelectric textiles[J]. Advanced Materials, 2016, 28(25): 5038-5044. doi: 10.1002/adma.201600709
    [61] ZHENG Y, HAN X, YANG J, et al. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling[J]. Energy & Environmental Science, 2022, 15(6): 2374-2385.
    [62] JING Y, LUO J, HAN X, et al. Scalable manufacturing durable, tailorable and recyclable multifunctional woven thermoelectric textile system[J]. Energy & Environmental Science, 2023, 16(10): 4334-4344
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  138
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2023-12-05
  • 录用日期:  2024-01-02
  • 网络出版日期:  2024-01-13
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回