孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001
引用本文: 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001
MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001
Citation: MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001

WS2/g-C3N4异质结光催化分解水制氢性能及机制

H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction

  • 摘要: 通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C3N4)纳米片和WS2纳米片混合物构建WS2/g-C3N4异质结,该异质结保留g-C3N4和WS2主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS2纳米片含量为3wt%时光催化制氢速率高达68.62 μmol/h,分别是g-C3N4纳米片和WS2纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C3N4的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C3N4纳米片和WS2纳米片大幅提升。

     

    Abstract: The WS2/graphite phase nitrogen carbide(g-C3N4) heterojunction was established through the solvent evaporation and second calcinations the mixture of g-C3N4 nanosheets and WS2 nanosheets. The main structure of g-C3N4 and WS2 in the heterojunction is not destroyed in the calcinations process and the interface is connected by chemical bond, which enhances the stability of heterojunction. The photocatalysis results indicate that the H2 production rate reaches to 68.62 μmol/h while the content of WS2 is 3wt%, which are 2.53 times and 15.29 times as that of g-C3N4 nanosheets and WS2 nanosheets, respectively. Besides, the H2 production rate is not decreased distinctly after 5 times circulation experiments, which reveals that the WS2/g-C3N4 heterojunction has a good chemical stability. Photoelectric property indicates that the establish of heterojunction structure can not only enhance the transport rate of excited electrons, but also suppress the recombination rate of charge carriers. Thus, the H2 production rate is enhanced distinctly compared with that of pure g-C3N4 nanosheets and WS2 nanosheets.

     

/

返回文章
返回