WS2/g-C3N4异质结光催化分解水制氢性能及机制

孟培媛, 郭明媛, 乔勋

孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001
引用本文: 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001
MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001
Citation: MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 591-600. DOI: 10.13801/j.cnki.fhclxb.20201011.001

WS2/g-C3N4异质结光催化分解水制氢性能及机制

基金项目: 陕西省教育厅专项科学研究计划(17JK1156);西京学院特区人才专项基金(XJ17T09)
详细信息
    通讯作者:

    孟培媛,硕士,助教,研究方向为新型纳米材料研究、海洋装备防护、油气田井下设备  E-mail:lyg041@163.com

  • 中图分类号: TK91;O644.1

H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction

  • 摘要: 通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C3N4)纳米片和WS2纳米片混合物构建WS2/g-C3N4异质结,该异质结保留g-C3N4和WS2主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS2纳米片含量为3wt%时光催化制氢速率高达68.62 μmol/h,分别是g-C3N4纳米片和WS2纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C3N4的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C3N4纳米片和WS2纳米片大幅提升。
    Abstract: The WS2/graphite phase nitrogen carbide(g-C3N4) heterojunction was established through the solvent evaporation and second calcinations the mixture of g-C3N4 nanosheets and WS2 nanosheets. The main structure of g-C3N4 and WS2 in the heterojunction is not destroyed in the calcinations process and the interface is connected by chemical bond, which enhances the stability of heterojunction. The photocatalysis results indicate that the H2 production rate reaches to 68.62 μmol/h while the content of WS2 is 3wt%, which are 2.53 times and 15.29 times as that of g-C3N4 nanosheets and WS2 nanosheets, respectively. Besides, the H2 production rate is not decreased distinctly after 5 times circulation experiments, which reveals that the WS2/g-C3N4 heterojunction has a good chemical stability. Photoelectric property indicates that the establish of heterojunction structure can not only enhance the transport rate of excited electrons, but also suppress the recombination rate of charge carriers. Thus, the H2 production rate is enhanced distinctly compared with that of pure g-C3N4 nanosheets and WS2 nanosheets.
  • 图  1   光催化分解水制氢装置的示意图(a)和实物图(b)

    Figure  1.   Equipment of H2 evolution by water splitting by sketch diagram (a) and picture (b) of real products

    图  2   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的XRD图谱

    Figure  2.   XRD patterns of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  3   g-C3N4纳米片(a)、WS2纳米片(b)和3-WS2/g-C3N4异质结(c)的SEM图像,g-C3N4纳米片(d)、WS2纳米片(e)和3-WS2/g-C3N4异质结(f)的TEM图像,以及g-C3N4纳米片(g)、WS2纳米片(h)和3-WS2/g-C3N4异质结(i)的HRTEM图像

    Figure  3.   SEM images of g-C3N4 nanosheets (a), WS2 nanosheets (b), 3-WS2/g-C3N4 heterojunction (c); TEM images of g-C3N4 nanosheets (d), WS2 nanosheets (e), 3-WS2/g-C3N4 heterojunction (f); HRTEM images of g-C3N4 nanosheets (g), WS2 nanosheets (h), 3-WS2/g-C3N4 heterojunction (i)

    图  4   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的紫外-可见吸收光图谱

    Figure  4.   UV-vis spectra of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  5   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的红外光谱图

    Figure  5.   FTIR spectra of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  6   g-C3N4和3-WS2/g-C3N4异质结XPS全图谱(a)、C1s图谱(b)、N1s图谱(c)和O1s图谱(d)

    Figure  6.   XPS spectra of survey spectra (a), C1s spectra (b), N1s spectra (c) and O1s spectra (d) in g-C3N4 and 3-WS2/g-C3N4 heterojunction

    图  7   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的N2吸附-脱附平衡曲线

    Figure  7.   N2 adsorption-desorption curves of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  8   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的光解水制氢曲线(a);不同含量WS2纳米片异质结光催化分解水制氢曲线(b)

    Figure  8.   H2 evolution rate of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction (a) ; H2 evolution rate of heterojunction with different amount of WS2 nanosheets (b)

    图  9   3-WS2/g-C3N4异质结光解水制氢稳定性

    Figure  9.   Stability of 3-WS2/g-C3N4 heterojunction

    图  10   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的光致发光光图谱

    Figure  10.   PL spectra of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  11   g-C3N4纳米片、WS2纳米片和3-WS2/g-C3N4异质结的光电流强度

    Figure  11.   Photocurrent intensity of g-C3N4 nanosheets, WS2 nanosheets and 3-WS2/g-C3N4 heterojunction

    图  12   3-WS2/g-C3N4异质结活性因子捕获实验

    Figure  12.   Active species trapping experiments of 3-WS2/g-C3N4 heterojunction

    IPA—Isopropanol; TEOA—Triethanolamine; BQ— Benzoquinone

    图  13   WS2/g-C3N4异质结光催化机制

    Figure  13.   Enhanced mechanism of 3-WS2/g-C3N4 heterojunction on photocatalysis

    表  1   不同WS2/石墨相碳化氮(g-C3N4)g-C3N4异质结样品中g-C3N4和WS2的质量

    Table  1   Mass of graphite phase nitrogen carbide(g-C3N4) and WS2 in different WS2/g-C3N4 heterojunction samples

    Sample1-WS2/g-C3N42-WS2/g-C3N43-WS2/g-C3N44-WS2/g-C3N45-WS2/g-C3N4
    WS2/g 0.0250.0500.0750.1000.125
    g-C3N4/g 11111
    下载: 导出CSV
  • [1] 天工. 我国能源领域对外开放不断扩大[J]. 天然气工业, 2018, 295(5):124.

    TIAN Gong. Energy field of China is opening wider to the outside world[J]. Natural Gas Industry,2018,295(5):124(in Chinese).

    [2] 马园媛, 赵岐. 煤气化技术的现状及发展趋势[J]. 化工管理, 2018, 487(21):202. DOI: 10.3969/j.issn.1008-4800.2018.21.156

    MA Yuanyuan, ZHAO Qi. Status quo and develop ment trend of coal gasification technology[J]. Chemical Enterprise Management,2018,487(21):202(in Chinese). DOI: 10.3969/j.issn.1008-4800.2018.21.156

    [3] 毛晨旭. 超临界水煤气化工艺动力循环设计与性能分析[D]. 大连: 大连理工大学, 2018.

    MAO Chenxu. Design and performance analysis of power cycle with process of coal gasification in supercritical water[D]. Dalian: Dalian University of Technology, 2018(in Chinese).

    [4]

    BOUVIER-MULLER J, ALLAIN C, ENJALBERT F, et al. Somatic cell count-based selection reduces susceptibility to energy shortage during early lactation in a sheep model[J]. Journal of Dairy Science,2018,101(3):2248-2259. DOI: 10.3168/jds.2017-13479

    [5]

    WANG Q, LU B, DOU X, et al. Distribution network voltage control based on coordinated optimization of PV and air-conditioning[J]. International Journal of Photoenergy,2018,2018:1-7.

    [6]

    PAUL K K, SREEKANTH N, BIROJU R K, et al. Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2 (B) nanobelts heterostructure[J]. Solar Energy Materials and Solar Cells,2018,185:364-374. DOI: 10.1016/j.solmat.2018.05.056

    [7]

    CROMWELL E F, STOLOW A, VRAKKING M J J, et al. Dynamics of ethylene photodissociation from rovibrational and translational energy distributions of H2 products[J]. Journal of Chemical Physics,1992,97(6):4029-4040. DOI: 10.1063/1.462942

    [8]

    BRUNGER M J, BUCKMAN S J, NEWMAN D S, et al. Elastic scattering and rovibrational excitation of H2 by low-energy electrons[J]. Journal of Physics B,1991,24(6):1435-1448. DOI: 10.1088/0953-4075/24/6/027

    [9]

    KESSON S E, SMITH I E. TiO2 content and the shoshonite and alkaline associations[J]. Nature,1972,236(68):110-111.

    [10]

    WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. Acs Nano,2008,2(7):1487. DOI: 10.1021/nn800251f

    [11]

    GILJA V, KATANI Z, KREHULA L K, et al. Efficiency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye[J]. Science & Engineering of Composite Materials,2019,26(1):292-300.

    [12]

    LI H, NA L, MING W, et al. Synthesis of novel and stable g-C3N4-Bi2WO6hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation[J]. Royal Society Open Science,2018,5(3):171419. DOI: 10.1098/rsos.171419

    [13]

    LI C, SUN Z, ZHANG W, et al. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus[J]. Applied Catalysis B: Environmental,2018,220:272-282. DOI: 10.1016/j.apcatb.2017.08.044

    [14]

    ZHANG S, GAO H, HUANG Y, et al. Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation[J]. Environmental Science: Nano,2018,5:1179-1190. DOI: 10.1039/C8EN00124C

    [15]

    MA Y, LIU E, HU X, et al. A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities[J]. Applied Surface Science,2015,358:246-251. DOI: 10.1016/j.apsusc.2015.08.174

    [16]

    WU Y N, MIAO H, FAN S, et al. Determination of 23 β2-agonists and 5 β-blockers in animal muscle by high performance liquid chromatography-linear ion trap mass spectrometry[J]. Science China Chemistry,2010,53(4):832-840. DOI: 10.1007/s11426-010-0071-6

    [17]

    JIA J, DU X, LIU E, et al. Highly efficient and stable Au/Bi2MoO6/Bi2WO6 heterostructure with enhanced photocatalytic activity for NO gas removal under visible light irradiation[J]. Journal of Physics D: Applied Physics,2017,50(14):145103. DOI: 10.1088/1361-6463/aa60e3

    [18]

    CHU J, HAN X, YU Z, et al. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J]. Acs Applied Materials & Interfaces,2018,10(24):20404-20411.

    [19]

    WANG X, MAEDA, KAZUHIKO, et al. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society,2009,131(5):1680-1681. DOI: 10.1021/ja809307s

    [20]

    WANG X, CHEN X, THOMAS A, et al. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material[J]. Advanced Materials,2010,21(16):1609-1612.

    [21]

    DONG G, HO W, WANG C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A,2015,3(46):23435-23441. DOI: 10.1039/C5TA06540B

    [22]

    LOU J, DONG G, ZHU Y, et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4[J]. Applied Catalysis B: Environmental,2017,214(10):46-56.

    [23]

    JIAGUO Y, JIMMY C, MITCH K, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis,2003,217(1):69-78.

    [24]

    XIANG Q, YU J, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C,2011,115(15):7355-7363. DOI: 10.1021/jp200953k

  • 期刊类型引用(1)

    1. 徐文媛,黄鸿坤,沈蒙莎,程永兵,陈曦,杨绍明. NaAlCl_4/ZSM-5@γ-Al_2O_3核壳复盐催化剂的制备及其歧化性能. 复合材料学报. 2022(10): 4602-4609 . 本站查看

    其他类型引用(0)

图(13)  /  表(1)
计量
  • 文章访问数:  2231
  • HTML全文浏览量:  599
  • PDF下载量:  124
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-06-29
  • 录用日期:  2020-09-26
  • 网络出版日期:  2020-10-11
  • 刊出日期:  2021-02-14

目录

    /

    返回文章
    返回