留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纤维取向分布图像处理技术的短纤维增强聚合物基复合材料力学性能预测方法

管涛 李元庆 郭方亮 付绍云

管涛, 李元庆, 郭方亮, 等. 基于纤维取向分布图像处理技术的短纤维增强聚合物基复合材料力学性能预测方法[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 管涛, 李元庆, 郭方亮, 等. 基于纤维取向分布图像处理技术的短纤维增强聚合物基复合材料力学性能预测方法[J]. 复合材料学报, 2024, 42(0): 1-11.
GUAN Tao, LI Yuanqing, GUO Fangliang, et al. A method for predicting the mechanical properties of short fiber reinforced polymer composites based on fiber orientation distribution image processing technique[J]. Acta Materiae Compositae Sinica.
Citation: GUAN Tao, LI Yuanqing, GUO Fangliang, et al. A method for predicting the mechanical properties of short fiber reinforced polymer composites based on fiber orientation distribution image processing technique[J]. Acta Materiae Compositae Sinica.

基于纤维取向分布图像处理技术的短纤维增强聚合物基复合材料力学性能预测方法

基金项目: 国家自然科学基金(12332008;12272067;12102070);中国博士后基金(2023M730413);重庆市自然科学基金(CSTB2023NSCQ-MSX1052;CSTB2022NSCQ-MSX0608);青年人才托举工程项目(2022QNRC001)
详细信息
    通讯作者:

    付绍云,博士,教授,博士生导师,研究方向:航空复合材料 E-mail: syfu@cqu.edu.cn

  • 中图分类号: TB332

A method for predicting the mechanical properties of short fiber reinforced polymer composites based on fiber orientation distribution image processing technique

Funds: National Natural Science Foundation of China (12332008, 12272067and 12102070); China Postdoctoral Science Foundation (2023M730413); Chongqing Natural Science Foundation (CSTB2023NSCQ-MSX1052 and CSTB2022NSCQ-MSX0608); Young Elite Scien-tists Sponsorship Program (2022QNRC001)
  • 摘要: 短纤维增强聚合物基复合材料(SFRPC)具有复杂的细观结构,掌握纤维取向分布(FOD)规律是短纤维复合材料力学建模的前提。然而,由于纤维取向统计需要收集大量的纤维信息,通过传统手动标注读取显微图像的方式人工成本高且耗时长,统计效率与精度均难以保证。本文利用图像分析算法捕获纤维截面几何特征,发展了相应的纤维取向分布图像处理技术,实现了FOD信息的快速统计。探究了图像分析算法中关键参数的合理取值范围,并针对挤出注塑成型工艺制备的短玻纤增强和短碳纤增强聚醚酰亚胺复合材料(SGF/PEI 和SCF/PEI)进行微观结构表征,将统计的纤维状态信息传递至类层合板(LAA)与Fu-Lauke模型框架,进而预测了不同体积分数下两种复合材料的模量与强度,预测结果与有限元模拟结果、拉伸试验测试结果均吻合良好。本文将纤维取向分布图像处理技术与复合材料力学性能预测方法相结合,有助于更高效准确地理解短纤维增强复合材料的构效关系,对于复合材料结构设计具有较高的指导作用。

     

  • 图  1  SFRPC制备流程

    Figure  1.  Preparation process of SFRPC.

    图  2  纤维取向分布自动化统计流程图

    Figure  2.  The semi-automated measurement flow chart of fiber orientation distribution.

    图  3  建立体素化网格RVE模型流程图

    Figure  3.  Flowchart of establishing a voxelized mesh RVE model.

    图  4  SFRPC拉伸应力-应变曲线

    Figure  4.  Typical tensile stress-strain curves of SFRPC.

    图  5  (a)4%,(b)8%和(c)12%纤维体积分数的SGF/PEI复合材料和(d)4%,(e)8%和(f)12%纤维体积分数的SCF(T300)/PEI复合材料FLD结果

    Figure  5.  The FLD of SGF/PEI composites with fiber volume fractions of (a) 4%, (b) 8%, (c) 12%, as well as SCF(T300)/PEI composites with fiber volume fractions of (a) 4%, (b) 8%, (c) 12%.

    图  6  不同结构元素半径$R$的顶帽变换及二值化效果对比

    Figure  6.  Comparison of top-hat transformation and binarization effects of different structural element radius R

    图  7  不同阈值$h$的接触纤维分割效果

    Figure  7.  Contact fiber segmentation effects with different thresholds (h)

    图  8  (a)4%,(b)8%和(c)12%纤维体积分数的SGF/PEI复合材料和(d)4%,(e)8%和(f)12%纤维体积分数的T300/PEI复合材料FOD结果

    Figure  8.  FOD of SGF/PEI composites with volume fractions of (a) 4%, (b) 8%, (c) 12%, as well as T300/PEI composites with volume fractions of (a) 4%,(b) 8%, (c) 12%.

    图  9  SFRPC拉伸模量预测结果与实验对比

    Figure  9.  Comparison of predicted tensile modulus of SFRPC with experimental results.

    图  10  SFRPC拉伸强度预测结果与实验对比

    Figure  10.  Comparison of predicted tensile strength of SFRPC with experimental results.

    表  1  纤维和基体材料参数

    Table  1.   Material properties of fibers and matrix

    Material ${E_{11}}$/GPa ${E_{22}}$/GPa $ {{{v}}_{12}} $ $ {{{v}}_{23}} $ $ {{{G}}_{12}} $/GPa $ {{{G}}_{23}} $/GPa ${r_{\mathrm{f}}}$/μm
    PEI[36] 3.3 3.3 0.36 0.36 1.32 1.32
    E-GF[36] 82.2 82.2 0.22 0.22 33.61 33.61 3.25
    T300[37] 240 15 0.013 0.2 7 15 3.5
    下载: 导出CSV

    表  2  Fu -Lauke模型相关材料参数

    Table  2.   Relevant material parameters of the Fu-Lauke model

    Material ${V_f}$/(%) $\sigma ({l_c})$/MPa $\mu $ $ {\sigma _m} $/MPa
    SGF/PEI 4 4164[36] 0.47 85
    8 77
    12 67
    SCF(T300)/PEI 4 3962[36] 0.65 78
    8 69
    12 65
    下载: 导出CSV
  • [1] Sun Z, Zhao Z K, Zhang Y Y, et al. Mechanical, tribological and thermal properties of injection molded short carbon fiber/expanded graphite/polyetherimide composites[J]. Composites Science and Technology, 2021, 201: 108498. doi: 10.1016/j.compscitech.2020.108498
    [2] Sun Z, Li Y Q, Huang P, et al. Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers[J]. Composite Structures, 2021, 270: 114075. doi: 10.1016/j.compstruct.2021.114075
    [3] 王文娇, 王振钦. 玻纤增强塑料在动态填充注射成型过程中的玻纤取向研究[J]. 造纸装备及材料, 2023, 52(6): 92-94. doi: 10.3969/j.issn.1672-3066.2023.06.030

    WANG Wenjiao, WANG Zhenqin. Research on glass fiber orientation of glass fiber reinforced plastics in dynamic filling injection molding process[J]. Papermaking Equipment & Materials, 2023, 52(6): 92-94 (in Chinese). doi: 10.3969/j.issn.1672-3066.2023.06.030
    [4] Hausmann J, Esha, Schmidt S, et al. Mean value-amplitude method for the determination of anisotropic mechanical properties of short fiber reinforced thermoplastics[J]. Journal of Composites Science, 2022, 6(6): 179. doi: 10.3390/jcs6060179
    [5] Maertens R, Hees A, Schoettl L, et al. Fiber shortening during injection molding of glass fiber-reinforced phenolic molding compounds: Fiber length measurement method development and validation[J]. Polymer-Plastics Technology and Materials, 2021, 60(8): 872-885. doi: 10.1080/25740881.2020.1867170
    [6] Li S, Tian H, Hu G H, et al. Effects of shear during injection molding on the anisotropic microstructure and properties of EPDM/PP TPV containing rubber nanoparticle agglomerates[J]. Polymer, 2021, 229: 124008. doi: 10.1016/j.polymer.2021.124008
    [7] Wittemann F, Maertens R, Kärger L, et al. Injection molding simulation of short fiber reinforced thermosets with anisotropic and non-Newtonian flow behavior[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105476. doi: 10.1016/j.compositesa.2019.105476
    [8] Hamanaka S, Nonomura C, Thi T B N, et al. Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials[J]. Journal of Polymer Engineering, 2019, 39(7): 653-660. doi: 10.1515/polyeng-2018-0371
    [9] 黄达勇, 赵先琼. 注塑成型纤维增强热塑性树脂复合材料刚度预测方法[J]. 复合材料学报, 2021, 38(7): 2196-2206.

    HUANG Dayong, ZHAO Xianqiong. Stiffness prediction for injection molded fiber reinforced thermoplastics composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2196-2206 (in Chinese).
    [10] Fu S Y, Lauke B. The elastic modulus of misaligned short-fiber-reinforced polymers[J]. Composites science and technology, 1998, 58(3-4): 389-400. doi: 10.1016/S0266-3538(97)00129-2
    [11] 张育宁, 姚瑞娟, 王会平, 等. 有一定取向性的碳纤维增强尼龙6复合材料弹性模量的实验和理论研究[J]. 复合材料学报, 2019, 36(2): 315-321.

    ZHANG Yuning, YAO Ruijuan, WANG, Huiping, et al. Experimental and theoretical study on elastic modulus of oriented carbon fiber reinforced nylon 6 composites[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 315-321 (in Chinese).
    [12] Jayaraman K, Kortschot M T. Correction to the Fukuda-Kawata Young's modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials[J]. Journal of materials science, 1996, 31: 2059-2064. doi: 10.1007/BF00356627
    [13] Fu S Y, Lauke B. Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers[J]. Composites Science and Technology, 1996, 56(10): 1179-1190. doi: 10.1016/S0266-3538(96)00072-3
    [14] Guo F L, Huang P, Li Y Q, et al. Multiscale modeling of mechanical behaviors of carbon fiber reinforced epoxy composites subjected to hygrothermal aging[J]. Composite Structures, 2021, 256: 113098. doi: 10.1016/j.compstruct.2020.113098
    [15] 王吉玲, 金浩, 郭瑞文, 等. 基于机器学习的短纤维增强复合材料弹性力学性能预测[J]. 复合材料学报, 2024, 41.

    WANG Jiling, JIN Hao, GUO Ruiwen, et al. Prediction of elastic properties of short fiber reinforced composites based on machine learning[J]. Acta Materiae Compositae Sinica, 2024, 41 (in Chinese).
    [16] Guo F L, Hu J M, Guan T, et al. Modeling and characterizations of mechanical behaviors of short carbon fiber and short glass fiber reinforced polyetherimide composites[J]. Composites Science and Technology, 2022, 229: 109685. doi: 10.1016/j.compscitech.2022.109685
    [17] Feng Y, Wang Z, Liu M, et al. Numerical prediction for viscoelasticity of woven carbon fiber reinforced polymers (CFRPs) during curing accounting for variation of yarn angle caused by preforming[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107631. doi: 10.1016/j.compositesa.2023.107631
    [18] Luo Y. A Numerical Comparison between Geometry and Voxel Based Finite Element Modeling for Elasticity Characterization of Particulate Composites[J]. International Journal of Composite Materials, 2021, 11: 54-61.
    [19] Willems F, Bonten C. Prediction of the mechanical properties of long fiber reinforced thermoplastics[C]//AIP Conference Proceedings. AIP Publishing, 2020, 2289(1).
    [20] Huang P W, Peng H S, Hwang S J, et al. The low breaking fiber mechanism and its effect on the behavior of the melt flow of injection molded ultra-long glass fiber reinforced polypropylene composites[J]. Polymers, 2021, 13(15): 2492. doi: 10.3390/polym13152492
    [21] Hou X Q, Chen X Y, Liu B C, et al. Fracture and orientation of long-glass-fiber-reinforced polypropylene during injection molding[J]. Polymer Engineering & Science, 2020, 60(1): 13-21.
    [22] International Organization for Standardization. ISO 22314: Plastics-Glass-fibre-reinforced products-Determination of fibre length[S]. Switzerland: International Organization for Standardization, 2006.
    [23] Goris S, Back T, Yanev A, et al. A novel fiber length measurement technique for discontinuous fiber-reinforced composites: A comparative study with existing methods[J]. Polymer Composites, 2018, 39(11): 4058-4070. doi: 10.1002/pc.24466
    [24] Mu W, Chen X, Li S, et al. Mechanical Performances Analysis and Prediction of Short Plant Fiber-Reinforced PLA Composites[J]. Polymers, 2023, 15(15): 3222. doi: 10.3390/polym15153222
    [25] Hessman P A, Riedel T, Welschinger F, et al. Microstructural analysis of short glass fiber reinforced thermoplastics based on x-ray micro-computed tomography[J]. Composites Science and Technology, 2019, 183: 107752. doi: 10.1016/j.compscitech.2019.107752
    [26] Spencer R, Alwekar S, Jo E, et al. Fiber orientation evaluation in reinforced composites using digital image correlation and thermal excitation[J]. Composites Part B: Engineering, 2022, 234: 109713. doi: 10.1016/j.compositesb.2022.109713
    [27] Eberhardt C, Clarke A, Vincent M, et al. Fibre-orientation measurements in short-glass-fibre composites—II: A quantitative error estimate of the 2d image analysis technique[J]. Composites Science and Technology, 2001, 61(13): 1961-1974. doi: 10.1016/S0266-3538(01)00106-3
    [28] 中国国家标准化管理委员会(标准制定单位). 树脂浇铸体性能试验方法: GB/T 2567-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567-2008[S]. Beijing: China Standards Press, 2005(in Chinese).
    [29] Hine P J, Duckett R A, Ward I M, et al. A comparison of short glass fiber reinforced polypropylene plates made by conventional injection molding and using shear controlled injection molding[J]. Polymer Composites, 1996, 17(3): 400-407. doi: 10.1002/pc.10627
    [30] Bhabatosh C. Digital image processing and analysis[M]. PHI Learning Pvt. Ltd. , 2011.
    [31] Sharma B N, Naragani D, Nguyen B N, et al. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites[J]. Journal of Composite Materials, 2018, 52(13): 1781-1797. doi: 10.1177/0021998317733533
    [32] Chandekar H, Chaudhari V V, Waigaonkar S. Theoretical models for stiffness prediction of short fibre composites[J]. Materials Today: Proceedings, 2022, 57: 711-714. doi: 10.1016/j.matpr.2022.02.177
    [33] Cox H L. The elasticity and strength of paper and other fibrous materials[J]. British journal of applied physics, 1952, 3(3): 72. doi: 10.1088/0508-3443/3/3/302
    [34] Halpin J C, Pagano N J. The laminate approximation for randomly oriented fibrous composites[J]. Journal of composite materials, 1969, 3(4): 720-724. doi: 10.1177/002199836900300416
    [35] Fu S, Zhou B, Lung C. On the pull-out of fibres with a branched structure and the inference of strength and fracture toughness of composites[J]. Composites science and technology, 1993, 47(3): 245-250. doi: 10.1016/0266-3538(93)90033-D
    [36] Hu J M, Zhou Z M, Guo F L, et al. Investigation of recycling effects on the mechanical properties of short carbon and glass fiber reinforced polyetherimide composites[J]. Journal of Applied Polymer Science, 2023, 140(21): e53871. doi: 10.1002/app.53871
    [37] Tanaka F, Ishikawa T, Tane M. A comprehensive review of the elastic constants of carbon fibers: implications for design and manufacturing of high-performance composite materials[J]. Advanced Composite Materials, 2023: 1-21.
  • 加载中
计量
  • 文章访问数:  103
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-03-18
  • 录用日期:  2024-04-12
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回