留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管/橡胶复合材料的界面性能:碳纳米管的比表面积的影响

王双 田晨晨 宁南英 张立群 吕亚非 田明

王双, 田晨晨, 宁南英, 等. 碳纳米管/橡胶复合材料的界面性能:碳纳米管的比表面积的影响[J]. 复合材料学报, 2021, 38(2): 601-611. doi: 10.13801/j.cnki.fhclxb.20200601.002
引用本文: 王双, 田晨晨, 宁南英, 等. 碳纳米管/橡胶复合材料的界面性能:碳纳米管的比表面积的影响[J]. 复合材料学报, 2021, 38(2): 601-611. doi: 10.13801/j.cnki.fhclxb.20200601.002
WANG Shuang, TIAN Chenchen, NING Nanying, et al. Interfacial properties of carbon nanotubes/rubber composites: Effects of specific surface area of carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 601-611. doi: 10.13801/j.cnki.fhclxb.20200601.002
Citation: WANG Shuang, TIAN Chenchen, NING Nanying, et al. Interfacial properties of carbon nanotubes/rubber composites: Effects of specific surface area of carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 601-611. doi: 10.13801/j.cnki.fhclxb.20200601.002

碳纳米管/橡胶复合材料的界面性能:碳纳米管的比表面积的影响

doi: 10.13801/j.cnki.fhclxb.20200601.002
基金项目: 国家自然科学基金(51525301;51790501)
详细信息
    通讯作者:

    田明,博士,教授,博士生导师,研究方向为聚合物共混及复合材料 E-mail:tianm@mail.buct.edu.cn

  • 中图分类号: TB332

Interfacial properties of carbon nanotubes/rubber composites: Effects of specific surface area of carbon nanotubes

  • 摘要: 橡胶大分子和无机纳米填料由于相互作用形成的界面是决定弹性体复合材料性能的重要因素。利用原子力显微镜的峰值力定量纳米力学映射模式(AFM-QNM)建立了碳纳米管/溶聚丁苯橡胶(CNT/SSBR)复合材料的界面纳米力学性能和界面厚度的定量表征方法,研究揭示了CNT的比表面积对CNT/SSBR复合材料的界面纳米力学性能和界面厚度的影响。结果表明,随着CNT的比表面积的增大,CNT/SSBR复合材料的界面纳米力学性能逐渐增强,界面厚度逐渐增大,这是由于CNT表面作用的橡胶大分子不动链数增加。

     

  • 图  1  CNT-40、CNT-110和CNT-350的FTIR图谱

    Figure  1.  FTIR spectra of CNT-40, CNT-110 and CNT-350

    图  2  CNT-40、CNT-110和CNT-350的拉曼光图谱

    Figure  2.  Raman spectra of CNT-40, CNT-110 and CNT-350

    ID—Intensity of the D peak; IG—Intensity of the G peak; ID/IG—Intensity ratio of peak D to peak G

    图  3  CNT-350/溶聚丁苯橡胶(SSBR)复合材料的原子力显微镜(AFM)图像(扫描尺寸为3 μm)

    Figure  3.  Atomic force microscopy (AFM) images of CNT-350/solution polymerized butadiene styrene rubber (SSBR) composites (Scan size is 3 μm) ((a) Height image; (b) Modulus image; (c) Adhesion image)

    图  4  CNT-350/SSBR复合材料的AFM图像(扫描尺寸为1 μm)

    Figure  4.  AFM images of CNT-350/Soluble styrene butadiene rubber (SSBR) composites (Scan size is 1 μm) ((a) Height image; (b) Modulus image; (c) Adhesion image)

    图  5  基于填料相对于样品表面的位置选择合适的CNT

    Figure  5.  Schematic representation of the location of filler relative to the sample surface for selecting appropriate CNT (((a),(a’)) Appropriate CNT; ((b),(b’)) Inappropriate CNT)

    图  6  CNT-350/SSBR复合材料的界面区域的模量-位移曲线

    Figure  6.  Modulus-displacement curve of the interface region in CNT-350/SSBR composites

    图  7  CNT-350/SSBR复合材料每个区域特征点处的AFM力-形变曲线和JKR模拟(对应图6中圆圈标出的a、b、c三点)

    Figure  7.  AFM unloading force-deformation curves and the JKR simulations at typical points (see circles in Fig. 6 a, b, c) in each region of CNT-350/SSBR composites

    图  8  “划线法”统计CNT-350/SSBR复合材料的界面厚度

    Figure  8.  “Line method” to calculate interfacial thickness of CNT-350/SSBR composites

    图  9  CNT/SSBR复合材料的AFM图像

    Figure  9.  AFM images of CNT/SSBR composites

    图  10  CNT/SSBR复合材料的界面区域的模量-位移曲线

    Figure  10.  Modulus-displacement curves of the interface region in CNT/SSBR composites

    图  11  CNT-40/SSBR复合材料每个区域特征点处的AFM力-形变曲线和JKR模拟(对应图10(a)中圆圈标出的a、b、c三点)

    Figure  11.  AFM unloading force-deformation curves and the JKR simulations at typical points (see circles in Fig. 10(a) a, b, c) in each region of CNT-40/SSBR composites

    图  12  CNT-110/SSBR复合材料每个区域特征点处的AFM力-形变曲线和JKR模拟(对应图10(b)中圆圈标出的a、b、c三点)

    Figure  12.  AFM unloading force-deformation curves and the JKR simulations at typical points (see circles in Fig. 10(b) a, b, c) in each region of CNT-110/SSBR composites

    图  13  不同CNT/SSBR复合材料的杨氏模量统计

    Figure  13.  Young’s modulus of different CNT/SSBR composites

    图  14  不同CNT/SSBR复合材料的界面厚度统计

    Figure  14.  Interfacial thickness of different CNT/SSBR composites

    图  15  SSBR基体和不同CNT/SSBR复合材料的DSC曲线

    Figure  15.  DSC curves of SSBR and different CNT/SSBR composites

    图  16  CNT表面吸附的橡胶大分子链的三种存在形式

    Figure  16.  Adsorbed chains attached on the CNT surface in three types of topologies

    表  1  碳纳米管(CNT)的基本参数

    Table  1.   Main parameters of carbon nanotube (CNT)

    SampleL/μmOD/nmP/%SSA/(m2·g1)
    CNT-35010-30<898350
    CNT-11010-3020-3098110
    CNT-4010-30>509840
    Notes: L—Length of CNT; OD—Outside diameter of CNT; P—Purity of CNT; SSA—Specific surface area of CNT.
    下载: 导出CSV

    表  2  SSBR基体和不同CNT/SSBR复合材料的动力学参数

    Table  2.   Dynamic mechanical behaviors of SSBR and different CNT/SSBR composites

    SampleSSBRCNT-40/SSBRCNT-110/SSBRCNT-350/SSBR
    Tg/℃ −14.0 −10.9 −10.2 −11.4
    Tg/℃ 3.1 3.8 2.6
    Cp/(J·g-1·K1) 0.12 0.11 0.10 0.09
    Cpn/(J·g-1·K1) 0.12 0.11 0.10 0.09
    χim/wt% 8.3 16.7 25.0
    Notes: Tg—Glass transition temperature; ∆Tg—Change in glass transition temperature between pure SSBR and CNT/SSBR composites; ΔCp—Change in heat capacity of the composites at the glass transition temperature; ΔCpn—Normalized change in heat capacity; χim—Mass fraction of immobile rubber macromolecules chains in composites.
    下载: 导出CSV
  • [1] SALVETAT J P, BRIGGS G A D, BONARD J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical Review Letters,1999,82(5):944-947. doi: 10.1103/PhysRevLett.82.944
    [2] NATSUKI T, ENDO M. Stress simulation of carbon nano-tubes in tension and compression[J]. Carbon,2004,42(11):2147-2151. doi: 10.1016/j.carbon.2004.04.022
    [3] HUANG H, LIU C H, WU Y, et al. Aligned carbon nanotube composite films for thermal management[J]. Advanced Materials,2005,17(13):1652-1656. doi: 10.1002/adma.200500467
    [4] MARCONNET A M, YAMAMOTO N, PANZER M A, et al. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density[J]. ACS Nano,2011,5(6):4818-4825. doi: 10.1021/nn200847u
    [5] NING N Y, JI L J, ZHANG L Q, et al. High elasticity and conductivity of elastomer composites with arrayed carbon nanotubes as nanosprings[J]. Composites Science and Technology,2015,118:78-84. doi: 10.1016/j.compscitech.2015.08.012
    [6] LIU J, LU Y L, TIAN M, et al. The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: Simulation and experiment[J]. Advanced Functional Materials,2013,23(9):1156-1163. doi: 10.1002/adfm.201201438
    [7] SHAO H Q, WEI H, HE J H. Dynamic properties and tire performances of composites filled with carbon nanotubes[J]. Rubber Chemistry and Technology,2018,91(3):609-620. doi: 10.5254/rct.18.82599
    [8] MASUDA J, TORKELSON J M. Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing[J]. Macromolecules,2008,41(16):5974-5977. doi: 10.1021/ma801321j
    [9] LI Y H, ZHOU P C, AN F, et al. Dynamic self-stiffening and structural evolutions of polyacrylonitrile/carbon nanotube nanocomposites[J]. ACS Applied Materials Interfaces,2017,9(6):5653-5659. doi: 10.1021/acsami.6b16029
    [10] BLOW C M. Polymer/particulate filler interaction-the bound rubber phenomena[J]. Polymer,1973,14(7):309-323. doi: 10.1016/0032-3861(73)90124-9
    [11] QU M, DENG F, KALKHORAN S, et al. Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites[J]. Soft Matter,2011,7(3):1066-1077. doi: 10.1039/C0SM00645A
    [12] TANG Z H, HUANG J, WU X H, et al. Interface engineering toward promoting silanization by ionic liquid for high-performance rubber/silica composites[J]. Industrial & Engineering Chemistry Research,2015,54(43):10747-10756.
    [13] VO L T, ANASTASIADIS S H, GIANNELIS E P. Dielectric study of poly(styrene-co-butadiene) composites with carbon black, silica, and nanoclay[J]. Macromolecules,2011,44(15):6162-6171. doi: 10.1021/ma200044c
    [14] CARROLL B, CHENG S, SOKOLOV A P. Analyzing the interfacial layer properties in polymer nanocomposites by broadband dielectric spectroscopy[J]. Macromolecules,2017,50(16):6149-6163. doi: 10.1021/acs.macromol.7b00825
    [15] GRUNIN L, BRUDER M, NIKOLAEV I, et al. Standardization of results of NMR relaxation experiments in rubber investigation[J]. Applied Magnetic Resonance,2005,29(3):515-521. doi: 10.1007/BF03167181
    [16] LITVINOV V M, ORZA R A, KLÜPPEL M, et al. Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM[J]. Macromolecules,2011,44(12):4887-4900. doi: 10.1021/ma2007255
    [17] SATTAR M A, GANGADHARAN S, PATNAIK A. Design of dual hybrid network natural rubber-SiO2 elastomers with tailored mechanical and self-healing properties[J]. ACS Omega,2019,4(6):10939-10949. doi: 10.1021/acsomega.9b01243
    [18] WANG D, NAKAJIMA K, FUJINAMI S, et al. Characterization of morphology and mechanical properties of block copolymers using atomic force microscopy: Effects of processing conditions[J]. Polymer,2012,53(9):1960-1965. doi: 10.1016/j.polymer.2012.02.046
    [19] NGUYEN H K, FUJINAMI S, NAKAJIMA K. Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius[J]. Polymer,2016,87:114-122. doi: 10.1016/j.polymer.2016.01.080
    [20] NING N Y, MI T, CHU G Y, et al. A quantitative approach to study the interface of carbon nanotubes/elastomer nanocomposites[J]. European Polymer Journal,2018,102:10-18. doi: 10.1016/j.eurpolymj.2018.03.007
    [21] DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science,1975,53(2):314-326. doi: 10.1016/0021-9797(75)90018-1
    [22] GREENWOOD J, JOHNSON K. The mechanics of adhesion of viscoelastic solids[J]. Philosophical Magazine A,1981,43(3):697-711. doi: 10.1080/01418618108240402
    [23] NAKAJIMA K, ITO M, WANG D, et al. Nano-palpation AFM and its quantitative mechanical property mapping[J]. Microscopy,2014,63(3):193-207. doi: 10.1093/jmicro/dfu009
    [24] FERREIRA O D S, GELINCK E, GRAAF D, et al. Adhesion experiments using an AFM-parameters of influence[J]. Applied Surface Science,2010,257(1):48-55. doi: 10.1016/j.apsusc.2010.06.031
    [25] SNEDDON I N. The relation between load and penetration in the axisymmetric boussiness problem for a punch of arbitrary profile[J]. International Journal of Engineering Science,1965,3(1):47-57. doi: 10.1016/0020-7225(65)90019-4
    [26] ZHONG B C, JIA Z X, DONG H H, et al. One-step approach to reduce and modify graphene oxide via vulcanization accelerator and its application for elastomer reinforcement[J]. Chemical Engineering Journal,2017,317:51-59. doi: 10.1016/j.cej.2017.02.072
    [27] YUE Y L, ZHANG H, ZHANG Z, et al. Polymer-filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber[J]. Composites Science and Technology,2013,86:1-8. doi: 10.1016/j.compscitech.2013.06.019
    [28] TIAN C C, CHU G Y, FENG Y X, et al. Quantitatively identify and understand the interphase of SiO2/rubber nanocomposites by using nanomechanical mapping technique of AFM[J]. Composites Science and Technology,2019,170:1-6. doi: 10.1016/j.compscitech.2018.11.020
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1492
  • HTML全文浏览量:  441
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 录用日期:  2020-05-21
  • 网络出版日期:  2020-06-02
  • 刊出日期:  2021-02-15

目录

    /

    返回文章
    返回