留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙二醇对羟基磷灰石除氟性能的影响

马明明 崔淑慧 杨家琴

马明明, 崔淑慧, 杨家琴. 聚乙二醇对羟基磷灰石除氟性能的影响[J]. 复合材料学报, 2024, 41(7): 3647-3659.
引用本文: 马明明, 崔淑慧, 杨家琴. 聚乙二醇对羟基磷灰石除氟性能的影响[J]. 复合材料学报, 2024, 41(7): 3647-3659.
MA Mingming, CUI Shuhui, YANG Jiaqin. Effect of polyethylene glycol on fluoride removal performance of hydroxyapatite[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3647-3659.
Citation: MA Mingming, CUI Shuhui, YANG Jiaqin. Effect of polyethylene glycol on fluoride removal performance of hydroxyapatite[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3647-3659.

聚乙二醇对羟基磷灰石除氟性能的影响

基金项目: 西安市科技计划项目(22NYYF051)
详细信息
    通讯作者:

    马明明,博士,教授,研究方向:功能材料绿色制备, E-mail;18220593193@163.com

  • 中图分类号: O69;TB332

Effect of polyethylene glycol on fluoride removal performance of hydroxyapatite

Funds: Scientific Research Project supported by Xi’an City (22NYYF051)
  • 摘要: 为改善羟基磷灰石(HAP)合成过程易团聚导致其除氟效率不高的不足,本文应用清洁简便、绿色环保的电化学合成法,将亲水性强、分散性优异的非离子型表面活性剂聚乙二醇(PEG)加入到制备HAP的混合支持电解液中,在铜片作工作电极的表面制备出新型HAP复合材料(PEG/(HAP),并与纯HAP的晶体结构、孔径、比表面积、表面形貌、元素占比和官能团对比,以揭示PEG/HAP 除氟效率高于HAP的内在机制。结果发现,PEG/HAP与HAP有相同的晶面结构特征蜂、元素和化学键,但PEG/HAP的各元素含量占比、羟基和磷酸根离子官能团的吸收峰位和吸收强度与HAP 有一定差异;PEG使HAP从短棒状的表面形貌变成有利于交换和吸附氟离子的多孔和孔隙结构,其平均孔径由16.58 nm 减小到 11.93 nm,比表面积从24.29 m²/g 增加到29.83 m²/g;虽然PEG/ HAP与HAP的吸附类型均为IV型的H3滞后环,二者介孔分布范围一致,但PEG/ HAP的微孔和介孔数量明显高于HAP。尽管两种材料对氟离子的吸附反应均显示熵增、吸热和自发过程特征,吸附等温模型均符合Langmuir-Freundlich,但PEG/HAP的颗粒内扩散速率常数略大于HAP,PEG/HAP的吸附氟离子容量(9.56 mg/g)高于HAP( 8.36 mg/g);且去除氟离子的循环再生次数从HAP的4次增加到PEG/HAP的6次。此外,PEG的存在并没有影响制备条件参数如支持电解液pH值对HAP吸附氟离子容量的影响趋势,但却使HAP吸附氟离子容量增加。共存阴离子如Cl、NO3 、SO4 2−、CO3 2−均不干扰PEG/HAP和HAP对氟离子的吸附。

     

  • 图  1  PEG/二水磷酸二氢钙(DCPD) (a), 聚乙二醇/羟基磷灰石(PEG/HAP) (b)和标准HAP (c)的XRD

    Figure  1.  XRD images of PEG/Calcium phosphate dihydrate (DCPD) (a), Polyethylene glycol / hydroxyapatite (PEG/HAP) (b) and Standard HAP(c)

    图  2  HAP (a) 和PEG/HAP的SEM

    Figure  2.  SEM images of HAP(a) and PEG/HAP(b)

    图  3  HAP 和PEG/ HAP的氮气吸附/脱附曲线

    Figure  3.  Nitrogen adsorption/desorption curves of HAP and PEG/HAP

    图  4  HAP和PEG/HAP的孔径分布曲线

    Figure  4.  Curves of the pore size distribution of HAPand PEG/HAP

    图  5  HAP 和PEG/HAP的XPS 曲线

    Figure  5.  XPS curves of HAP and PEG/HAP

    图  6  HAP 和PEG/HAP的红外光谱曲线

    Figure  6.  FTIR spectrum curves of HAP and PEG/HAP

    图  7  pH对PEG/HAP和HAP 吸附容量影响

    Figure  7.  Effect of pH on PEG/HAP and HAP for adsorption capacity

    图  8  温度对PEG/HAP吸附容量的影响

    Figure  8.  Effect of temperature on adsorption capacity of PEG/HAP

    图  9  PEG/HAP和HAP吸附F的lnKd与1/T 线性曲线

    Figure  9.  Linear curves of lnKd vs. 1/T of PEG/HAP and HAP adsorption F

    (Fconcentration ×mg/L: a. 1.5; b. 2.0; c. 4.0; d. 6.0;e. 8.0; f. 10.0 )

    图  10  共存阴离子对PEG/HAP(a)和HAP(b)吸附容量影响

    Figure  10.  Effects of coexisting ions on PEG/HAP(a) and HAP adsorption capacity

    图  11  吸附时间对PEG/HAP (a)和HAP( b)除氟效率的影响

    Figure  11.  Effect of adsorption time on defluoridationl efficient of PEG/HAP (a) and HAP( b)

    表  1  HAP和PEG/HAP的孔结构参数

    Table  1.   Pore structure parameters of HAPand PEG/HAP

    Material Parameters
    BET Surface Area/(m2·g−1) Average pore diameter/nm
    HAP 24.29 16.58
    PEG/HAP 29.83 11.93
    下载: 导出CSV

    表  2  2种材料元素占比

    Table  2.   The atomic ratio of the two materials

    Atomic/%
    Material
    C O P Ca
    HAP 14.18 59.29 12.47 14.06
    PEG/HAP 17.43 56.22 11.23 15.12
    下载: 导出CSV

    表  3  PEG/HAP和HAP吸附F的热力学参数

    Table  3.   Thermodynamic parameters of PEG/HAP and HAP adsorption F

    Finitial concention mg/L T/K $\Delta {G}^{\ominus } $/(kJ·mol−1) $\Delta {S}^{\ominus } $/(J·K−1·mol−1) $\Delta {H}^{\ominus } $/(kJ·mol−1)
    PEG/HAP HAP PEG/HAP HAP PEG/HAP HAP
    1.5 288.15 −20.6064 −20.8255 183.9473 108.6640 32.3980 10.4860
    298.15 −22.4459 −21.9122
    308.15 −24.2854 −22.9988
    318.15 −26.1248 −24.0855
    328.15 −27.9643 −25.1721
    2 288.15 −20.6560 −20.8680 164.4675 112.0162 26.7353 11.4095
    298.15 −22.3007 −21.9881
    308.15 −23.9454 −23.1083
    318.15 −25.5900 −24.2285
    328.15 −27.2347 −25.3486
    4 288.15 −18.1882 −17.3630 164.1350 169.6522 29.1073 31.5223
    298.15 −19.8296 −19.0595
    308.15 −21.4709 −20.7560
    318.15 −23.1123 −22.4525
    328.15 −24.7536 −24.1491
    6 288.15 −16.6281 −15.7314 174.6855 167.8098 33.7075 32.6230
    298.15 −18.3750 −17.4095
    308.15 −20.1218 −19.0876
    318.15 −21.8687 −20.7657
    328.15 −23.6155 −22.4438
    8 288.15 −15.8648 −14.9546 135.6928 151.0870 23.2351 28.5811
    298.15 −17.2217 −16.4655
    308.15 −18.5786 −17.9764
    318.15 −19.9356 −19.4872
    328.15 −21.2925 −20.9981
    10 288.15 −15.2550 −14.6329 128.7755 129.4490 21.8517 22.6678
    298.15 −16.5427 −15.9274
    308.15 −17.8305 −17.2219
    318.15 −19.1182 −18.5164
    328.15 −20.4060 −19.8109
    Notes:$\Delta {G}^{\ominus } $,$\Delta {S}^{\ominus } $ and $\Delta {H}^{\ominus } $ are standard Gibbs function change value, entropy change, and enthalpy change, respectively.
    下载: 导出CSV

    表  4  PEG/HAP与HAP的 Langmuir-Freundlich模型拟合参数

    Table  4.   Fitting parameters of Langmuir-Freundlich of PEG/HAP and HAP

    ModelT/Kqm / (mg·g−1)

    bnR2
    PEG/HAPHAPPEG/HAPHAPPEG/HAPHAPPEG/HAPHAP
    Langmuir-Freundlich288.154.60583.45503.08963.06621.25223.87080.97010.9615
    298.155.89484.37573.289627.30551.20792.86340.98580.9694
    308.156.87075.61922.83824.33990.86201.38140.99140.9818
    318.158.79417.28962.76333.36430.91441.43000.97570.9960
    328.1510.27068.91942.96742.76050.96581.34160.98220.9941
    Notes: b in table 4 is the adsorption constant; n is the non-uniformity coefficient and R 2 is the correlation coefficient
    下载: 导出CSV

    表  5  PEG/HAP动力学方程拟合参数

    Table  5.   Fitting parameters of kinetics equation for PEG/HAP

    Equation Parameters R2
    Pseudo first-order model k1/min−1 Qe/(mg·g−1) 0.8953
    0.0171 3.4672
    Pseudo econd-order model k2 /(g·mg−1·min−1 Qe/(mg·g−1) 0.9854
    0.0050 4.1203
    Elovich A/(mg·g−1·min−1) B/(g·mg−1) 0.9663
    0.2526 1.2902
    Morrist intraparticle diffusion model k3/(g·g−1·min−0.5) C 0.9876
    0.1774 0.6684
    Notes:k1 is the adsorption rate constant of the quasi first order kinetic model; k2 is the adsorption rate constant of the quasi second order kinetic model; B is the desorption coefficient; A is the constant adsorption rate; k3 is the internal diffusion rate constant; C is for Boundary-layer thickness;Qe is the equilibrium adsorption capacity
    下载: 导出CSV

    表  6  HAP不同动力学模型的拟合参数

    Table  6.   Fitting parameters of kinetics equation for HAP

    Equation Parameters R2
    Pseudo first-order model k1/min−1 Qe/(mg·g−1) 0.9186
    0.0136 3.1689
    Pseudo econd-order model k2/(g·mg−1·min−1) Qe/(mg·g−1) 0.9770
    0.0043 3.8226
    Elovich A/(mg·g−1·min−1) B/(g·mg−1) 0.9595
    0.1740 1.3443
    Morrist intraparticle diffusion model k3/ (g·g−1·min−0.5) C 0.9915
    0.1712 0.3834
    Notes: k1 is the adsorption rate constant of the quasi first order kinetic model; k2 is the adsorption rate constant of the quasi second order kinetic model; B is the desorption coefficient; A is the constant adsorption rate; k3 is the internal diffusion rate constant; C is for Boundary-layer thickness;Qe is the equilibrium adsorption capacity
    下载: 导出CSV

    表  7  HAP和PEG/HAP吸附容量

    Table  7.   Adsorption capacity of HAP and PEG/HAP

    q/(mg·g−1) Materials 1 st 2 nd 3 rd 4 th 5 th
    HAP 2.36 2.38 2.32 2.34 2.36
    PEG/HAP 2.68 2.70 2.70 2.66 2.64
    Notes: q is HAP or PEG/HAP adsorption capacity to F in model waste water
    下载: 导出CSV

    表  8  两种材料氟离子去除率

    Table  8.   Defluoridation efficient of two materials

    Defluoridationl efficient/% Materials 1 st 2 nd 3 rd 4 th 5 th
    HAP 59.0 59.5 58.0 58.5 59.0
    PEG/HAP 67.0 67.5 67.5 66.5 66.0
    下载: 导出CSV

    表  9  HAP和PEG/HAP循环再生次数

    Table  9.   Recycling regeneration times of HAP and PEG/HAP

    CF/(mg·L−1) Materials First time Second time Third time Fourth time Fifth time Sixth time
    HAP 0.65 0.75 0.86 0.94 1.12 -
    PEG/HAP 0.42 0.51 0.64 0.73 0.86 0.94
    Notes: CF is the remain concentration of F in model waste water
    下载: 导出CSV

    表  10  PEG/HAP与同类氟离子吸附剂吸附参数

    Table  10.   Adsorption parameters of PEG/HAP and similar fluoride ion adsorbents

    Absorbents Solution pH Adsorption capacity /
    (mg·g−1)
    References
    PEG/HAP 6.0 9.56 This work
    Citric acid/HAP 8.31 2.678 [40]
    Road tea-leaves 3 0.126 [41]
    Polylactic
    acid/HAP
    - 6.06 [42]
    下载: 导出CSV
  • [1] GEORGE S, MEHTA D, SAHARAN VK. Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis[J]. Reviews in Chemical Engineering, 2018, 36(3): 369-400.
    [2] GONG LY, FENG L. Preparation and defluorination mechanism of a novel copolymerized hydroxyapatite-aluminium chloride material[J]. RSC Advances, 2015, 5(115): 95334-95343. doi: 10.1039/C5RA20372D
    [3] SAHU H, MOHANTY K. Al grafted natural hydroxyapatite for neem oil transesterification: Kinetic study at optimal point[J]. Chemical Engineering Journal, 2015, 280: 564-574. doi: 10.1016/j.cej.2015.06.040
    [4] MONDALl P, MEHTA D, GEORGE S. Defluoridation studies with synthesized magnesium-incorporated hydroxyapatite and parameter optimization using response surface methodology[J]. Desalination and Water Treatment, 2016, 57(56): 27294-27313. doi: 10.1080/19443994.2016.1167628
    [5] 赵瑨云, 胡家朋, 林皓等. Ag+改性羟基磷灰石制备及其除氟抑菌特性研究[J]. 硅酸盐通报, 2020, 39(12): 3977-3984.

    ZHAO Jinyun, HU Jiapeng, LIN Hao, et al. Fabrication of hydroxyapatite-Modified Ag+ and its Property for defluorination andbacteriostasis activity[J]. Bulltin of the Chinese Ceramic Society, 2020, 39(12): 3977-3984(in Chinese).
    [6] CHEN Z, LIU Y, MAO L, et al. Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation[J]. Ceramics International, 2017, 44(6): 6002-6009.
    [7] GAO S, SUN R, WEI Z, et al. Size-dependent defluoridation properties of synthetic hydroxyapatite[J]. Journal of Fluorine Chemistry, 2009, 130(6): 550-556. doi: 10.1016/j.jfluchem.2009.03.007
    [8] 干成果, 冯莉. 负载羟基磷灰石活性炭的制备及除氟性能[J]. 功能材料, 2013, 44(22): 3243-3246.

    GAN Chengguo, FENG Li. Preparation of activated carbon supported hydroxyapatite and the removal performance of fluorine ion[J]. Journal of Functional Materials, 2013, 44(22): 3243-3246(in Chinese).
    [9] SANI T, GṌMEZ-HORTIGŰELA L, MAYORAL Á, et al. Controlled growth of nano-hydroxyapatite on stilbite: Defluoridation performance[J]. Microporous & Mesoporous Materials, 2017, 254: 86-95.
    [10] GERGELY G, WéBER F, LUKáCS I, et al. Preparation and characterization of hydroxyapatite from eggshell[J]. Ceramics International, 2010, 36(2): 803-806. doi: 10.1016/j.ceramint.2009.09.020
    [11] WORKENEH K, ZEREFFA EA, SEGNE TA, et al. Eggshell-derived nanohydroxyapatite adsorbent for defluoridation of drinking water from bofo of ethiopia[J]. Journal of Nanomaterials, 2019, 2: 1-12.
    [12] SAMANT A, NAYAK B, MISRA PK. Kinetics and mechanistic interpretation of fluoride removal by nanocrystalline hydroxyapatite derived from Limacine artica shells[J]. Journal of Environmental Chemical Engineering, 2017, 5: 5429-5438. doi: 10.1016/j.jece.2017.09.058
    [13] XU F, JIANG C, LI D. Defluoridation of wastewaters using HAP-coated-limestone[J]. Separation Science & Technology, 2018, 54(14): 2304-2313.
    [14] YU X, TONG S, GE M, et al. Removal of fluoride from drinking water by cellulose @hydroxyapatite nano-composites[J]. Carbohydrate Polymers, 2013, 92(1): 269-275. doi: 10.1016/j.carbpol.2012.09.045
    [15] 胡家朋. 羟基磷灰石复合改性材料的制备及其除氟性能研究[D]. 南昌, 南昌大学, 2016

    HU Jiapeng. Preparation and defluoridation properties of hydroxyapatite modified composites[D]. Nanchang, Nanchang Univercity, 2016 (in Chinese).
    [16] 赵瑨云, 刘瑞来, 徐婕, 等. 原位合成羟基磷灰石/壳聚 糖复合吸附剂及除氟特性研究[J]. 高分子通报, 2021, 2: 54-62.

    ZHAO Jinyun, LIU Ruilai, XU Jie, et al. In situ fabracation of hydroxyapatite/chitosan composite adsorbent and its property for defluorination[J]. Polymer . Bulletin, 2021, 2: 54-62(in Chinese ).
    [17] 叶建东, 肖锋, 王秀鹏, 等. 十二烷基硫酸钠在化学沉淀法合成羟基磷灰石粉体中的防团聚作用[J]. 功能材料, 2005, 10: 120-122.

    YE Jiandong, XIAO Feng, WANG Xiupeng, et al. Rol e of sodium dodecyl sulfate in de-agglomerati on of hydroxyapatite powder synthesi zed by chemical preci pitati on method[J]. Journal of Functional Materials, 2005, 10: 120-122(in Chinese).
    [18] MUKHERJEE S, KNDU B, CHANDA A, et al. Effect of functionalisation of CNT in the preparation of HAP-CNT biocomposites[J]. Ceramics International, 2015, 41(3): 3766-3774. doi: 10.1016/j.ceramint.2014.11.052
    [19] 章萍, 杨陈凯, 马若男, 等. 碳纳米管/羟基磷灰石复合材料对水体F的去除研究[J]. 中国环境科学, 2019, 39(1): 179-187.

    ZHANG Ping, YANG Dongkai, MA Ruonan, et al. Effective Rem removal of fluoride by carbon nanotubes/hydroxyapatite Composite[J]. China Environmental Science, 2019, 39(1): 179 179-187(in Chinese).
    [20] PRABHU SM, ELANCHEZHIYAN SSD, LEE G, et al. Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ fabrication method and its prospective application for defluoridation studies[J]. Chemical Engineering Journal, 2016, 300: 334-342. doi: 10.1016/j.cej.2016.04.111
    [21] 贾晓林, 钟香崇. 聚乙二醇在MgAl2O4前驱体表面的吸附及改性作用[J]. 中国粉体技术, 2004, 5: 12-15.

    JIA Xiaolin, ZHONG Xiangchong. Effect of PEG on absorption state and surface modification of MgAlO4 precursor[J]. China Powder Science and Technology, 2004, 5: 12-15 (in Chinese ).
    [22] 逯英英, 陈肖平, 马枭, 等. 聚乙二醇改性酚醛树脂基球形炭吸附脱硫脱氮性能研究[J]. 石油与天然气化工, 2017, 46(4): 6-10.

    LU Yingying, CHEN Xiaoping, MA Xiao, et al. Performance study on adsorption removal of sulfur and nitrogen compounds of carbon spheres derived from phenolic res-in with polyethylene glycol[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 6-10 (in Chinese ).
    [23] 李金鑫, 龚巧迪, 杨金燕. 改性羟基磷灰石对水体中五价钒的吸附[J]. 硅酸盐通报, 2018, 37(4): 1355-1362+1386.

    LI Jinxin, GONG Qiao di, YANG Jinyan. Adsorption of vanavandium(V) in aqueous solution by modified hydroxyapatite[J]. Bulltin of the Chinese Ceramic Society, 2018: 37(4: 1355-1362+1386 (in Chinese ).
    [24] 朱丹琛, 刘秀秀, 陈彰旭等. 羟基磷灰石微球的仿生合成及除氟性能[J]. 化学研究与应用, 2019, 31(3): 570-575.

    ZHU Danchen, LIU Xiuxiu, CHEN Zhangxu, et al. Biomimetic synthesis of hydroxyapatite microspheres and its defluoridation properties[J]. Chemical research and application, 2019, 31(3): 570-575 (in Chinese ).
    [25] RIVERA E M, ARAIZA M, BROSTOW W, et al. Synthesis of hydroxyapatite from eggshells[J]. Materials Letters, 1999, 41(3): 128-134. doi: 10.1016/S0167-577X(99)00118-4
    [26] JIE W, Li Y. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite[J]. European Polymer Journal, 2004, 40(3): 509-515. doi: 10.1016/j.eurpolymj.2003.10.028
    [27] 周婷婷. 磁性导电聚合物材料的合成及其对水中 Cr(Ⅵ)的吸附研究[D]. 广州, 华南理工大学, 2020.

    ZHOU Tingting. Preparation of magnetic conductive polymers materials and their performance in removing Cr(Ⅵ) in water[J]. Guangzhou, South China University of Technology, 2020(in Chinese).
    [28] BAUTISTA LF, PINILLA J, ARACIL J, et al. Adsorption isotherms of aspartame on commercial and chemically modified divinylbenzene styrene resins at different temperatures[J]. Journal of Chemical and Engineering Data, 2002, 47(3): 620-627. doi: 10.1021/je010325a
    [29] GAUTHAM PJ, PRABHAKAR TC. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects[J]. Journal of Contaminant Hydrology, 2012, 129-130: 46-53. doi: 10.1016/j.jconhyd.2011.12.001
    [30] LI H, XIAO DL, HE H, et al. Adsorption behavior and adsorption mechanism of Cu(II) ions on amino-functionalized magnetic nanoparticles[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9): 2657-2665. doi: 10.1016/S1003-6326(13)62782-X
    [31] TOFIGHY MA, MOHAMMADI T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Materials, 2011, 185(1): 140-147. doi: 10.1016/j.jhazmat.2010.09.008
    [32] 周亚平, 周理. 超临界氢在活性炭上的吸附等温线研究[J]. 物理化学学报, 1997, 13(2): 119-127. doi: 10.3866/PKU.WHXB19970205

    ZHOU Yaping, ZHOU Li. Study on the adsorption isotherms of supercritical hydrogen on activated carbon[J]. Acta Physical Chemisry, 1997, 13(2): 119-127(in Chinese ). doi: 10.3866/PKU.WHXB19970205
    [33] GREGORIO M. BET adsorption reaction model based on the pseudo steady-state hypothesis for describing the kinetics of adsorption in liquid phase[J]. Journal of Colloid And Interface Science, 2016, 467: 170-179. doi: 10.1016/j.jcis.2016.01.016
    [34] 蔡金水, 康得军, 杨天学等. 铁改性杭锦土吸附剂对水中砷的去除研究[J]. 环境科学研究, 2021, 34(2): 346-355.

    CHAI Jinshui, KANG Dejun, YANG Tian xue, et al. Removal of Arsenic from Water by Iron Modified Hangjin Clay Adsorbent[J]. Research of Environmental Sciences, 2021, 34(2): 346-355(in Chinese).
    [35] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material[J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755
    [36] ZHANG CJ, HU M, KE QF, et al. Nacre-inspired hydroxyapatite/chitosan layered composites effectively remove lead ions in continuous-flow wastewater[J]. Journal of Hazardous Materials, 2020, 386: 121999. doi: 10.1016/j.jhazmat.2019.121999
    [37] TIAN Y, LI JB, TODD WW, et al. Application of oily sludge-derived char for lead and cadmium removal from aqueous solution[J]. Chemical Engineering Journal, 2020, 384: 123386. doi: 10.1016/j.cej.2019.123386
    [38] KIM YS, KIM JH. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto sylopute[J]. The Journal of Chemical Thermodynamics, 2019, 130: 104-113. doi: 10.1016/j.jct.2018.10.005
    [39] CRINI G, PEINDY N, GIMBERT F. Removal of C. I. basic green 4 (Malachite Green) from aqueous solutions by absorption using cyclodextrinbased adsorbent: kinetic and equilibrium studies[J]. Separation Purification Technology, 2007, 53: 97-110. doi: 10.1016/j.seppur.2006.06.018
    [40] 赵佳昕, 李文博 , 王吉坤. 柠檬酸优化水热合成羟基磷灰石及矿井水除氟性能[J]. 洁 净 煤 技 术, 2022, 28(2): 175-185.

    ZHAO Jiaxin, LI Wenbo, WANG Jikun. Optimization of hydrothermal synthesis of hydroxyapatite with citric acid and its fluorine removal[J]. Clean coal technology , 2022, 28(2): 175-185 (in Chinese).
    [41] 张强英, 陶金帅, 李 伟, 等. 废弃茶叶吸附剂去除水中的氟离子[J]. 环境化学, 2022, 41(4): 1303-1311.

    ZHANG Qiangying, TAO Jinshuai, LI Wei, et al. Removal of fluoride ions from water using discarded tea adsorbent[J]. Environmental chemistry, 2022, 41(4): 1303-1311(in Chinese) .
    [42] 刘瑞来. 聚乳酸 /羟基磷灰石复合纤维膜制备及其对水中氟离子的吸附[J]. 科学技术与工程, 2018, 18(31): 50-57.

    LIU Ruilai. Preparation of polylactic acid /hydroxyapatite composite fiber membrane and its adsorption of fluoride ions[J]. Science and Technology and Engineering, 2018, 18(31): 50-57(in Chinese).
  • 加载中
图(11) / 表(10)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  49
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2023-12-07
  • 录用日期:  2023-12-09
  • 网络出版日期:  2024-01-02
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回