留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料层合板钝头体高能量低速冲击响应与损伤特性

邹君 刘佳鑫 王计真 郭亚周 李玲玲 冯振宇

邹君, 刘佳鑫, 王计真, 等. 复合材料层合板钝头体高能量低速冲击响应与损伤特性[J]. 复合材料学报, 2024, 41(6): 3264-3271.
引用本文: 邹君, 刘佳鑫, 王计真, 等. 复合材料层合板钝头体高能量低速冲击响应与损伤特性[J]. 复合材料学报, 2024, 41(6): 3264-3271.
ZOU Jun, LIU Jiaxin, WANG Jizhen, et al. Response and damage characteristics of composite laminates under high-energywide-area blunt impact[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3264-3271.
Citation: ZOU Jun, LIU Jiaxin, WANG Jizhen, et al. Response and damage characteristics of composite laminates under high-energywide-area blunt impact[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3264-3271.

复合材料层合板钝头体高能量低速冲击响应与损伤特性

基金项目: 机械结构力学及控制国家重点实验室开放课题 (MCMS-E-0522Y03);中央高校基金(3122022099)
详细信息
    通讯作者:

    邹君,博士,讲师,硕士生导师,研究方向为飞行器结构综合设计及强度分析技术 E-mail: jzou@cauc.edu.cn

  • 中图分类号: TB332

Response and damage characteristics of composite laminates under high-energywide-area blunt impact

Funds: Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-E-0522Y03);Fundamental Research Funds for the Central Universities in China (3122022099)
  • 摘要: 高能量大面积钝物冲击(HEWABI)会导致复合材料飞机结构内部发生严重损伤,但在机身外部几乎目视不可见,从而会对飞机运营安全带来较大的威胁。采用不同形状的刚性冲头和橡胶冲头对层合板进行高能量准静态加载试验,随后建立了基于连续介质损伤力学(CDM)的仿真分析模型。结果表明:建立的仿真分析模型可有效预测在刚性和橡胶冲头下的响应和损伤情况。当载荷达到40 kN时,刚性冲头下的层合板会发生严重的分层损伤;而橡胶冲头在加载过程中发生大变形,降低了层合板的局部应力,直至90 kN时仍未对层合板产生任何损伤。层合板损伤情况受刚性冲头形状影响较大,橡胶冲头形状则几乎无影响。

     

  • 图  1  冲头形状与尺寸(单位:mm)

    Figure  1.  Impactor’s shape and dimensions (Unit: mm)

    图  2  试验件及夹具安装示意图

    Figure  2.  Installation of the laminates and fixture

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  刚性冲头的试验和仿真载荷-位移曲线对比

    Figure  4.  Comparison of experimental and simulated load displacement curves for rigid impactors

    图  5  橡胶冲头的试验和仿真载荷-位移曲线对比

    Figure  5.  Comparison of experimental and simulated load displacement curves for rubber impactors

    图  6  DE710-T700S层合板形貌

    Figure  6.  DE710-T700S Laminate profile

    图  7  DE710-T700S层合板冲击后C扫描损伤图

    Figure  7.  The damage of DE710-T700S laminate under C-Scan

    图  8  DE710-T700S层合板仿真分层损伤累计结果

    Figure  8.  Simulated cumulative delamination damage results ofDE710-T700S laminate

    图  9  橡胶变形试验结果与仿真结果对比图

    Figure  9.  The comparison of experiment and simulation results of rubber deformation

    图  10  不同冲头下DE710-T700S层合板位移云图

    Figure  10.  Displacement contours of the DE710-T700S laminate under different impactors

    图  11  不同冲头下DE710-T700S层合板载荷-位移曲线对比

    Figure  11.  Comparison of load-displacement curves of DE710-T700S laminated plates under different impactors

    图  12  DE710-T700S层合板内能-位移曲线对比

    Figure  12.  Comparison of internal energy displacement curves of DE710-T700S laminated plates

    表  1  DE710-T700S单向板材料力学性能参数

    Table  1.   Mechanical property parameters of DE710-T700S unidirectional plate material

    Parameter Value
    ρ/(g·cm−3) 1.53
    E11/GPa 121
    E22/GPa 8.6
    E33/GPa 8.6
    ν12 0.317
    ν13 0.317
    ν23 0.5
    G12/GPa 3.7
    G13/GPa 3.7
    G23/GPa 3.7
    Xt/MPa 2376
    Xc/MPa 1068
    Yt/MPa 69
    Yc/MPa 208
    Sl/MPa 110
    St/MPa 110
    Notes: Eii(i=1,2,3)—Elastic modulus in direction i; vij(i=1,2; j=2,3)—Poisson's ratio in different directions; Gij(i=1,2; j=2,3)—Shear modulus in different directions; Xt and Xc—Longitudinal tensile and compressive strengths; Yt and Yc—Transverse tensile and compressive strengths; Sl and St—Longitudinal and transverse shear strength.
    下载: 导出CSV

    表  2  DE710-T700S层合板层间性能参数

    Table  2.   Interface performance parameters of DE710-T700S laminate

    Parameter Value
    E/GPa 8.6
    $t_{\text{n}}^0$/MPa 26
    $t_{\text{s}}^0$/MPa 62
    $t_{\text{t}}^0$/MPa 62
    GIC/(J·m−2) 771
    GIIC/(J·m−2) 3152
    GIIIC/(J·m−2) 3152
    Notes: E—Elastic modulus of cohesive layer; $t_{\text{n}}^0$($t_{\text{s}}^0$,$t_{\text{t}}^0$)—Interfacial strengths in three main directions; GIC (GIIC, GIIIC)—Critical energy release rates for different types of cracking.
    下载: 导出CSV

    表  3  Ogden材料参数(N=2)

    Table  3.   Ogden material parameters (N=2)

    i µi/MPa αi
    1 0.459 3.564
    2 3.409 −0.149
    下载: 导出CSV
  • [1] ZHANG X W, MOHAMMED I K, ZHANG M Y, et al. Temperature effects on the low velocity impact response of laminated glass with different types of interlayer materials[J]. International Journal of Impact Engineering, 2019, 124: 9-22. doi: 10.1016/j.ijimpeng.2018.09.004
    [2] CHAUPAL P, PRAKASH R. Damage identification in composite structure using machine learning techniques based on acoustic emission waveforms[J]. Recent Advances in Manufacturing Modelling and Optimization, 2022, 149-158.
    [3] NAM M. High energy wide area blunt impact damage to internal structural components of composite aircraft fuselage structures [D]. San Diego: University of California San Diego, 2021.
    [4] DEFRANCISCI G K. High energy wide area blunt impact on composite aircraft structures[D]. San Diego: University of California San Diego, 2013.
    [5] Federal Aviation Administration. High-energy wide-area blunt impact for composite structures: PS-ANM-25-20[S]. Washington DC: Federal Aviation Administration, 2016.
    [6] ZOU J C, LEI Z K, BAI R X, et al. Damage and failure analysis of composite stiffened panels under low-velocity impact and compression after impact[J]. Composite Structures, 2021, 262: 113333.
    [7] 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7): 1878-1888. doi: 10.13801/j.cnki.fhclxb.20180103.001

    TUO Hongliang, MA Xiaoping, LU Zhixian. A model for low velocity impact damage analysis of composite laminates based on continuum damage mechanics[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1878-1888(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180103.001
    [8] 马良颖. 碳纤维增强树脂基复合材料的抗鸟撞性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    MA Liangying. Research on bird strike resistance of carbon fiber rein-forced resin matrix composites [D]. Harbin: Harbin Institute of Technology, 2021( in Chinese).
    [9] CHEN Z M, KIM H, DEFRANCISCI G K. Experimental and modeling investigation of blunt impact to stringer-reinforced composite panels[C]// 28th Annual Technical Conference of the American Society for Composites 2013, ASC 2013. 2. 1848-1867.
    [10] HEIMBS S, VAN DE NBROUCKE B, DUPLESSIS KERGOMARD Y, et al. Rubber impact on 3D textile composites[J]. Applied Composite Materials, 2012, 19(3-4): 275-295.
    [11] MIKULIK Z, HAASE P. Composite damage metrics and inspection-blunt impact(CODAMEIN) [R]. Hambury: European Aviation Safety Agency, 2010.
    [12] DING Y Z, LIU J, HALL Z E C, et al. Damage and energy absorption behaviour of composite laminates under impact loading using different impactor geometries[J]. Composite Structures, 2023, 321: 117259.
    [13] HABIBI M, ABBASSI F, LAPERRIÈRE L. Quasi-static indentation and acoustic emission to analyze failure and damage of bio-composites subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2022, 158: 106976.
    [14] BOZKURT M O, COKER D. In-situ investigation of dynamic failure in [05/903]s CFRP beams under quasi-static and low-velocity impact loadings[J]. International Journal of Solids and Structures, 2021, 217-218:134-154.
    [15] SUN X C, WISNOM M R, HALLETT S R. Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 2–Numerical simulation[J]. Composite Structures, 2016, 136: 727-742.
    [16] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [17] 邹田春, 李龙辉, 巨乐章, 等. CFRP-铝合金板单、双搭接胶接接头刚度退化机理[J]. 材料导报, 2022, 36(19): 155-160.

    ZOU Tianchun, LI Longhui, JU Yuezhang, et al. Stiffness degradation mechanism of single and double lap bonded joints of CFRP-aluminum alloy plates[J]. Materials Reports, 2022, 36(19): 155-160(in Chinese).
    [18] EBADI-RAJOLI J, AKHAVAN-SAFAR A, HOSSEINI-TOUDESHKYH, et al. Progressive damage modeling of composite materials subjected to mixed mode cyclic loading using cohesive zone model[J]. Mechanics of Materials, 2020, 143: 103322.
    [19] JOHRI N, CHANDRA KANDPAL B, KUMAR N, et al. Effect of ply thickness and orientation on fatigue delamination of laminated composites using cohesive zone model[J]. Materials Today: Proceedings, 2021, 46(20): 11040-11045.
    [20] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438. doi: 10.1177/0021998303034505
    [21] KARNATI S R, SHIVAKUMAR K. Limited Input Benzeggagh and Kenane delamination failure criterion for mixed-mode loaded fiber reinforced composite laminates[J]. International Journal of Fracture, 2020, 222(1-2): 221-230. doi: 10.1007/s10704-019-00418-1
    [22] ZHOU J J, WEN P H, WANG S N. Numerical investigation on the repeated low-velocity impact behavior of composite laminates[J]. Composites Part B: Engineering, 2020, 185: 107771 doi: 10.1016/j.compositesb.2020.107771
    [23] 魏家威, 石霄鹏, 冯振宇. 应变率相关的橡胶本构模型研究[J]. 高压物理学报, 2022, 36(2): 107-117.

    WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain rate dependent constitutive model of rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 107-117(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  119
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-18
  • 录用日期:  2023-09-27
  • 网络出版日期:  2023-10-19
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回