留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生碳纤维铺层取向优化及复合材料性能

黄海鸿 孔令成 刘威豪 阮浩达

黄海鸿, 孔令成, 刘威豪, 等. 再生碳纤维铺层取向优化及复合材料性能[J]. 复合材料学报, 2024, 41(7): 3529-3539.
引用本文: 黄海鸿, 孔令成, 刘威豪, 等. 再生碳纤维铺层取向优化及复合材料性能[J]. 复合材料学报, 2024, 41(7): 3529-3539.
HUANG Haihong, KONG Lingcheng, LIU Weihao, et al. Recycled carbon fiber layering orientation optimization and its performance of composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3529-3539.
Citation: HUANG Haihong, KONG Lingcheng, LIU Weihao, et al. Recycled carbon fiber layering orientation optimization and its performance of composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3529-3539.

再生碳纤维铺层取向优化及复合材料性能

基金项目: 国家自然科学基金联合基金 (U20A20295)
详细信息
    通讯作者:

    黄海鸿,博士,教授,博士生导师,研究方向为绿色制造、再制造与回收再资源化等 E-mail: allenhuanghaihong@163.com

  • 中图分类号: TB332

Recycled carbon fiber layering orientation optimization and its performance of composites

Funds: National Natural Science Foundation of China (U20A20295)
  • 摘要: 回收得到的再生碳纤维(RCF)多为蓬松杂乱的短纤维束,基于湿法纤维取向技术可对其重新取向。传统纤维增强复合材料通常将纤维沿单向铺层,对开孔制件难以完全发挥纤维的增益效果,通过纤维曲线铺层可以提高复合材料的结构性能。本文通过设计纤维分散实验,研究了一定RCF含量与不同浓度羟乙基纤维素(HEC)的最佳配置参数。利用自行搭建的纤维取向路径可调控装置,将制备的分散液铺放得到不同轨迹和形状的纤维毡,基于二维快速傅里叶变换(2D FFT)评价RCF的取向效果。通过模压成型制备再生碳纤维/环氧树脂(RCF/EP)复合材料开孔试样,分析了不同铺层路径对开孔试样承载能力的影响。结果表明:当6 mm RCF含量为6 g/L时,最佳HEC浓度为14 g/L;按曲线路径制备的开孔试样有效减少开孔处的应力集中,较无序路径和水平路径开孔试样,极限载荷分别提高了69.5%、35.9%。研究拓宽了RCF/EP复合材料结构的设计自由度,为实现RCF材料的高性能再利用提供了参考。

     

  • 图  1  取向装置示意图

    Figure  1.  Orientation device diagram

    图  2  纤维溶液分散过程

    Figure  2.  Fiber solution dispersion

    图  3  纤维取向示意图

    Figure  3.  Fiber orientation diagram

    图  4  试样制备过程

    Figure  4.  Specimen preparation

    图  5  弯曲试样尺寸

    Figure  5.  Bending specimen size

    图  6  纤维铺层路径

    Figure  6.  Fiber laying paths

    图  7  整圆碳纤维及铺层路径

    Figure  7.  Circular fiber mat and laying path

    图  8  三点弯曲试验测试

    Figure  8.  Three point bending test

    图  9  HEC溶液粘度及纤维挤出液

    Figure  9.  HEC solution viscosity and fiber extrusion solution

    图  10  2D FFT表征纤维取向

    Figure  10.  2D FFT fiber orientation characterization

    图  11  不同路径下RCF/EP复合材料载荷-位移曲线

    Figure  11.  Load-displacement curves of RCF/EP composites under different paths

    图  12  圆形纤维毡显微图像

    Figure  12.  Microscopic image of the circular fiber mat

    图  13  不同路径RCF/EP复合材料试样的断裂图

    Figure  13.  Fracture diagram of RCF/EP composite specimens with different paths

    图  14  RCF/EP复合材料断裂面显微图像

    Figure  14.  Micrographs of RCF/EP composite fracture surfaces

    图  15  吊钩试样及应用

    Figure  15.  Hook sample and application

    图  16  无人机支架试样及应用

    Figure  16.  Uav support sample and application

    表  1  不同纤维角归一化取向值

    Table  1.   Normalized orientation values of different angles

    Fiber angle/(°)Summed pixel intensityMinimum pixel intensityNormalized pixel intensity2 D FFT alignment value
    087841.751.3206180.320618
    185998.941.2929130.292913
    282924.781.2466960.246696
    381181.901.2204940.220494
    66515.63
    17888437.301.3295720.329572
    17988464.481.3299800.329980
    18088385.251.3287890.328789
    18186827.311.3053670.305367
    下载: 导出CSV

    表  2  RCF/EP复合材料三点弯曲试验的测试结果和标准差

    Table  2.   Test results and standard deviation of the three-point bending test of RCF/EP composites

    Specimen 1 Specimen 2 Specimen 3 σ
    F1/N 331.466 317.465 351.385 13.918
    F2/N 238.113 254.242 243.695 6.688
    F3/N 134.331 126.611 123.841 4.439
    F4/N 182.621 209.595 197.895 11.044
    Notes:F1, F2, F3 and F4 represent the ultimate loads for the curved path, horizontal path, vertical path and unordered path specimens, respectively.
    下载: 导出CSV
  • [1] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review[J]. Advanced Composites and Hybrid Materials, 2019, 2: 214-233. doi: 10.1007/s42114-018-0072-z
    [2] PEI Chun, CHEN Piyu, KONG Sicheng, et al. Recyclable separation and recovery of carbon fibers from CFRP composites: Optimization and mechanism[J]. Separation and Purification Technology, 2021, 278: 119591. doi: 10.1016/j.seppur.2021.119591
    [3] ABDOU T R, JUNIOR A B, ESPINOSA D C R, et al. Recycling of polymeric composites from industrial waste by pyrolysis: Deep evaluation for carbon fibers reuse[J]. Waste Management, 2021, 120: 1-9. doi: 10.1016/j.wasman.2020.11.010
    [4] PAKDEL E, KASHI S, VARLEY R, et al. Recent progress in recycling carbon fibre reinforced composites and dry carbon fiber wastes[J]. Resources, Conservation and Recycling, 2021, 166: 105340. doi: 10.1016/j.resconrec.2020.105340
    [5] RANI M, CHOUDHARY P, KRISHNAN V, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades[J]. Composites part B:engineering, 2021, 215: 108768. doi: 10.1016/j.compositesb.2021.108768
    [6] DENG Zongyi, YUE Jianglai, HUANG Zhixiong. Solvothermal degradation and reuse of carbon fiber reinforced boron phenolic resin composites[J]. Composites Part B:Engineering, 2021, 221: 109011. doi: 10.1016/j.compositesb.2021.109011
    [7] 刘腾飞, 田小永, 朱伟军, 等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能[J]. 机械工程学报, 2019, 55(7): 128-134. doi: 10.3901/JME.2019.07.128

    LIU Tengfei, TIAN Xiaoyong, ZHU Weijun, et al. Research on 3D Printing of Continuous Fiber Self-reinforced Composites and Its Recyclability[J]. Journal of Mechanical Engineering, 2019, 55(7): 128-134(in Chinese). doi: 10.3901/JME.2019.07.128
    [8] MANTELLI A, ROMANI A, SURIANO R, et al. UV-assisted 3D printing of polymer composites from thermally and mechanically recycled carbon fibers[J]. Polymers, 2021, 13(5): 726. doi: 10.3390/polym13050726
    [9] WANG Kaifeng, CHEN Chi, ZHENG Qitan, et al. Multifunctional recycled carbon fiber-Ti3C2Tx MXene paper with superior electromagnetic interference shielding and photo/electro-thermal conversion performances[J]. Carbon, 2022, 197: 87-97. doi: 10.1016/j.carbon.2022.06.026
    [10] ZHANG Jin, CHEVALI V S, WANG Hao, et al. Current status of carbon fiber and carbon fiber composites recycling[J]. Composites Part B:Engineering, 2020, 193: 108053. doi: 10.1016/j.compositesb.2020.108053
    [11] 成焕波, 黄海鸿, 刘志峰, 等. 碳纤维复合材料在超临界正丁醇中降解的反应动力学[J]. 复合材料学报, 2016, 33(9): 1922-1930. doi: 10.13801/j.cnki.fhclxb.20151112.003

    CHENG Huanbo, HUANG Haihong, LIU Zhifeng, et al. Reaction kinetics of degradation of carbon fiber-reinforced plastic in supercritical n-butanol[J]. Chinese Journal of Composites, 2016, 33(9): 1922-1930(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151112.003
    [12] WANG P H, STERKENBURG R, KIM G, et al. Investigating the void content, fiber content, and fiber orientation of 3d printed recycled carbon fiber[J]. Key Engineering Materials, 2019, 801: 276-281. doi: 10.4028/www.scientific.net/KEM.801.276
    [13] FLEMMING T, KRESS G, FLEMMING M. A new aligned short-carbon-fiber-reinforced thermoplastic prepreg[J]. Advanced Composite Materials, 1996, 5(2): 151-159. doi: 10.1163/156855196X00068
    [14] LONGANA M L, YU H, LEE J, et al. Quasi-isotropic and pseudo-ductile highly aligned discontinuous fiber composites manufactured with the HiPerDiF (High Performance Discontinuous Fiber) technology[J]. Materials, 2019, 12(11): 1794. doi: 10.3390/ma12111794
    [15] LONGANA M L, ONDRA V, YU H N, et al. Reclaimed Carbon and Flax Fibre Composites: Manufacturing and Mechanical Properties[J]. Recycling, 2018, 3.4: 52.
    [16] LONGANA M L, ONG N, YU H, et al. Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method[J]. Composite Structures, 2016, 153: 271-277. doi: 10.1016/j.compstruct.2016.06.018
    [17] NEKODA V D W, REESE M S, Reda Taha M M, et al. Investigating the Effects of Fiber Surface Treatment and Alignment on Mechanical Properties of Recycled Carbon Fiber Composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 119: 38-47. doi: 10.1016/j.compositesa.2019.01.012
    [18] 李森, 黄海鸿, 刘威豪, 等. 再生短碳纤维湿法取向技术及其增强性能分析[J]. 复合材料学报, 2021, 39(3): 1068-1078. doi: 10.13801/j.cnki.fhclxb.20210603.001

    LI Sen, HUANG Haihong, LIU Weihao, et al. Wet orientation technology of recycled short carbon fiber and analysis of its reinforcement performance[J]. Journal of Composite Materials, 2021, 39(3): 1068-1078(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210603.001
    [19] MCLOUTH D T, SEVERINO V J, ADAMS M P, et al. The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS[J]. Additive Manufacturing, 2017, 18: 103-109. doi: 10.1016/j.addma.2017.09.003
    [20] HYER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA journal, 1991, 29(6): 1011-1015. doi: 10.2514/3.10697
    [21] HYER M W, LEE H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes[J]. Composite structures, 1991, 18(3): 239-261. doi: 10.1016/0263-8223(91)90035-W
    [22] JEGLEY D, TATTING B, GURDAL Z. Tow-steered panels with holes subjected to compression or shear loading[J]. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2005: 2081.
    [23] 杜宇, 杨涛, 戴维蓉, 等. 纤维曲线铺放的变刚度复合材料损伤失效试验研究[J]. 固体火箭技术, 2013, 36(6): 826-830.

    DU Yu, YANG Tao, DAI Weirong, et al. Experimental research of damaging failure of variable-stiffness composite[J]. Solid Rocket Technology, 2013, 36(6): 826-830(in Chinese).
    [24] 杜宇, 杨涛, 李志猛, 等. 纤维曲线铺放的变刚度复合材料层合板的失效分析[J]. 宇航材料工艺, 2013, 43(5): 22-25. doi: 10.3969/j.issn.1007-2330.2013.05.004

    DU Yu, YANG Tao, LI Zhimeng, et al. Failure Analysis of Variable-Stiffness Composite Laminates With Curvilinear Fiber Placement[J]. Aerospace Materials Technology, 2013, 43(5): 22-25(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.05.004
    [25] 吴尘瑾, 祖磊, 李书欣, 等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料, 2018, (04): 5-10.

    WU Chenjin, ZU Lei, LI Shuxin, et al. Design of fiber placement path and buckling analysis of variable-stiffness composite laminates[J]. Glass Fiber Reinforced Plastic/Composite, 2018, (04): 5-10(in Chinese).
    [26] SHAFIGHFARD T, CENDER T A, DEMIR E. Additive manufacturing of compliance optimized variable stiffness composites through short fiber alignment along curvilinear paths[J]. Additive Manufacturing, 2021, 37: 101718.
    [27] 邓媛, 刘东, 祝颖丹, 等. 纤维变角度牵引铺缝技术的研究进展[J]. 玻璃钢/复合材料, 2015, (06): 97-100.

    DENG Yuan, LIU Dong, ZHU Yingdan, et al. Progress in fibre variable angle tow placement technology[J]. Glass Fiber Reinforced Plastic/Composite Materials, 2015, (06): 97-100(in Chinese).
    [28] 黄海鸿, 张保玉, 赵志培. 超临界正丁醇对回收碳纤维复合材料的降解及表征[J]. 高等学校化学学报, 2017, 38(09): 1687-1694.

    HUANG Haihong, ZHANG Baoyu, ZHAO Zhipei. Degradation and Characterization of Recycling Carbon Fiber/Epoxy Resin Composites in Supercritical n-Butanol[J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, 2017, 38(09): 1687-1694(in Chinese).
    [29] LI N, LINK G, WANG T, et al. Path-designed 3D printing for topological optimized continuous carbon fiber reinforced composite structures[J]. Composites Part B:Engineering, 2020, 182: 107612. doi: 10.1016/j.compositesb.2019.107612
    [30] AYRES C E, JHA B S, MEREDITH H, et al. Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach[J]. Journal of Biomaterials Science, Polymer Edition, 2008, 19(5): 603-621 doi: 10.1163/156856208784089643
    [31] CHENG Huanbo, ZHOU Jinhu, GUO Lijun, et al. Dispersibility optimization of short carbon fiber suspension for the preparation of carbon fiber aligned mat reinforced composites[J]. Journal of Cleaner Production, 2023, 389: 136075. doi: 10.1016/j.jclepro.2023.136075
    [32] WRIGHT W J, KOERNER H, RAPKING D, et al. Rapid fiber alignment quantification in direct write printing of short fiber reinforced composites[J]. Composites Part B, 2022, 236: 109814. doi: 10.1016/j.compositesb.2022.109814
    [33] WANG Huaqiao, CHEN Jihong, FAN Zhichao, et al. Experimental Investigation on the Influence of Fiber Path Curvature on the Mechanical Properties of Composites[J]. Materials, 2021, 14.10: 2602.
    [34] FU S Y, MAI Y W, LAUKE B, et al. Synergistic effect on the fracture toughness of hybrid short glass fiber and short carbon fiber reinforced polypropylene composites[J]. Materials Science & Engineering A, 2002, 323(1-2): 326-335.
    [35] ZHANG Wenqing, DENG Xi, SUI Gang, et al. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites[J]. Carbon, 2019, 145: 629-639. doi: 10.1016/j.carbon.2019.01.063
    [36] MEI Hui, ZHANG Siming, CHEN Hao, et al. Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers[J]. Composites Science and Technology, 2016, 134: 89-95. doi: 10.1016/j.compscitech.2016.08.010
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  99
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2023-10-27
  • 录用日期:  2023-11-19
  • 网络出版日期:  2023-12-04
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回