留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压等离子改性对碳纤维复合材料表面温度与Ⅰ型断裂韧性的影响

许笑堃 胡俊涛 万海浪 赵冲 林建平 闵峻英

许笑堃, 胡俊涛, 万海浪, 等. 常压等离子改性对碳纤维复合材料表面温度与Ⅰ型断裂韧性的影响[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 许笑堃, 胡俊涛, 万海浪, 等. 常压等离子改性对碳纤维复合材料表面温度与Ⅰ型断裂韧性的影响[J]. 复合材料学报, 2024, 42(0): 1-12.
XU Xiaokun, HU Juntao, WAN Hailang, et al. Effect of atmospheric pressure plasma modification on surface temperature and Mode-I fracture toughness of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica.
Citation: XU Xiaokun, HU Juntao, WAN Hailang, et al. Effect of atmospheric pressure plasma modification on surface temperature and Mode-I fracture toughness of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica.

常压等离子改性对碳纤维复合材料表面温度与Ⅰ型断裂韧性的影响

基金项目: 国家自然科学基金 (52305410)
详细信息
    通讯作者:

    万海浪,博士,博士后,研究方向为高能束表面改性与胶接技术 E-mail: hailang_wan@tongji.edu.cn

    闵峻英,博士,博士生导师,研究方向为智能制造与精密成形技术 E-mail: junying.min@tongji.edu.cn

  • 中图分类号: TB332

Effect of atmospheric pressure plasma modification on surface temperature and Mode-I fracture toughness of carbon fiber reinforced polymer

Funds: National Natural Science Foundation of China (52305410)
  • 摘要: 常压等离子改性被广泛应用于改善碳纤维复合材料(CFRP)的胶接性能,然而,等离子改性过程会造成CFRP表面温度升高,导致热变形、热内应力甚至破坏基材,因此,需要进一步优化工艺参数,获得满足工程使用要求的等离子改性效果。本文采用空气作为常压等离子的气源,测试了不同等离子改性参数下CFRP表面的温度,建立了表面温度与喷嘴高度、扫描速度之间的函数关系,实现了准确的表面温度预测(均方根误差2.7℃,最大偏差5.4℃)。并进一步优化了等离子改性的扫描路径,以减少改性过程中热量的累积效应。结合等离子改性对CFRP胶接性能的测试结果,最终确定了满足表面处理温度小于150℃条件下等离子改性的最佳工艺参数:喷嘴高度16 mm,扫描速度45 mm/s,扫描间距16 mm。此时,CFRP表面温度为143.9℃,I型断裂韧性提升至425 J/m2 (相比原始状态提升约534.3%),失效模式由界面改善为混合失效。该研究结果旨在找到表面温度与性能提升的最佳等离子改性工艺参数,对于等离子改性工艺在CFRP中的工程应用具有重要参考价值。

     

  • 图  1  等离子改性CFRP表面

    Figure  1.  Plasma treated CFRP surface

    图  2  等离子喷嘴相对于试样表面的运动轨迹

    Figure  2.  Motion trajectory of the plasma nozzle relative to the surface of the sample

    图  3  红外热像仪测量碳纤维复合材料表面温度

    Figure  3.  Measurement of surface temperature of carbon fiber composite materials using infrared thermal imager

    图  4  等离子改性温度测试区域示意图

    Figure  4.  Schematic diagram of plasma treatment temperature testing area

    图  5  双悬臂梁(DCB)胶接试样制样工艺流程图

    Figure  5.  Double cantilever beam (DCB) adhesive sample preparation process flowchart

    图  6  DCB胶接接头示意图

    Figure  6.  Schematic diagram of DCB adhesive joint

    图  7  试样刻度标注

    Figure  7.  Sample scale marking

    图  8  DCB测试平台:(a) 实验设备;(b) DIC成像画面

    Figure  8.  DCB testing platform: (a) Experimental equipment; (b) DIC imaging screen

    图  9  碳纤维复合材料表面温度随等离子工艺参数的变化:(a)表面温度随喷嘴高度的变化;(b)表面温度随扫描速度的变化

    Figure  9.  Variation of surface temperature of carbon fiber composite materials with plasma treatment parameters: (a) Variation of treatment temperature with scanning speed; (b) Variation of treatment temperature with nozzle height

    图  10  实验测得碳纤维复合材料表面温度与多项式拟合结果对比

    Figure  10.  Comparison of Experimental Measurement and Polynomial Fitting Values of CFRP materials

    图  11  16 mm喷嘴高度不同扫描速度下处理温度

    Figure  11.  Processing temperature at different scanning speeds with 16 mm nozzle height

    图  12  等离子改性温度测试区域示意图

    Figure  12.  Schematic diagram of plasma treatment temperature testing area

    图  13  不同行间距下测试温度随测试区域的变化

    Figure  13.  Variation of testing temperature with different line spacing in the testing area

    图  14  等离子表面处理路径优化示意图

    Figure  14.  Schematic diagram of plasma surface treatment path optimization

    图  15  碳纤维复合材料表面物理形貌(SEM):(a)对照组;(b)P16-16-15

    Figure  15.  Surface physical morphology (SEM) of carbon fiber composite materials: (a) Control Group; (b) P16-16-15

    图  16  等离子体处理前后 CFRP 试样表面 XPS 图谱

    Figure  16.  Surface XPS spectra of CFRP specimens before and after plasma treatment

    图  17  等离子体处理前后 CFRP 试样表面 XPS 光谱

    Figure  17.  Surface XPS spectra of CFRP specimens before and after plasma treatment

    图  18  不同等离子改性参数下CFRP 胶接接头Ⅰ型层间断裂韧性GIc测试结果

    Figure  18.  Mode I interlaminar fracture toughness GIc test results of CFRP adhesive joint under different plasma treatment parameters

    图  19  CFRP胶接接头失效模式

    Figure  19.  Failure mode of CFRP adhesive joint

    图  20  失效表面光学显微镜观察结果:(a)对照组;(b) P16-16-15;(c) P16-16-35;(d) P16-16-55

    Figure  20.  Observation results of failure surface under optical microscope: (a) Control group; (b) P16-16-15; (c) P16-16-35; (d) P16-16-55

    表  1  等离子改性正交实验因素水平表

    Table  1.   Horizontal table of orthogonal experimental factors for plasma treatment

    Level Factor
    H/mm L/mm V/(mm·s−1)
    1 12 4 15
    2 14 8 25
    3 16 12 35
    4 18 16 45
    5 20 20 55
    Notes:H is the nozzle height; L is the scanning line spacing; V is the scanning speed.
    下载: 导出CSV

    表  2  等离子改性温度测试结果表

    Table  2.   Table of plasma treatment temperature test results

    No. Code T/℃ SD/℃ No. Code T/℃ SD/℃
    1 P12-4-15 275.0 0.0 14 P16-16-15 195.0 0.7
    2 P12-8-25 251.3 2.2 15 P16-20-25 168.6 0.5
    3 P12-12-35 219.5 0.5 16 P18-4-45 128.6 2.1
    4 P12-16-45 197.5 2.9 17 P18-8-55 123.0 0.4
    5 P12-20-55 178.7 2.3 18 P18-12-15 170.3 0.7
    6 P14-4-25 195.8 1.6 19 P18-16-25 151.5 1.4
    7 P14-8-35 177.7 2.9 20 P18-20-35 138.3 1.9
    8 P14-12-45 155.9 0.9 21 P20-4-55 112.9 0.7
    9 P14-16-55 152.4 1.5 22 P20-8-15 159.1 1.5
    10 P14-20-15 219.4 3.4 23 P20-12-25 134.6 0.8
    11 P16-4-35 154.2 1.0 24 P20-16-35 128.2 1.1
    12 P16-8-45 143.9 0.7 25 P20-20-45 118.2 0.8
    13 P16-12-55 130.3 1.3
    Notes:The code in the table represents: P(nozzle height H)-(scan line spacing L)-(nozzle movement speed V). The surface temperature of sample P12-4-15 has exceeded the maximum measurement value of the infrared thermal imager (275℃) during processing. T is the average temperature of the three tested points, and SD is the standard deviation of the three tested temperatures.
    下载: 导出CSV

    表  3  等离子处理前后 CFRP 试样表面主要化学元素组成及其所占比例

    Table  3.   Main chemical element composition and proportion on the surface of CFRP specimens before and after plasma treatment

    C1s/
    Atomic %
    N1s/
    Atomic %
    O1s/
    Atomic %
    F1s/
    Atomic %
    As-received 63.31 2.00 13.96 18.66
    D16-16-35 53.12 8.46 27.67 6.91
    下载: 导出CSV
  • [1] 王军照. 碳纤维复合材料在航空领域中的应用现状及改进[J]. 今日制造与升级, 2020, (8): 48-49.

    WANG J Z. Application Status and Improvement of Carbon Fiber Composite Materials in the Aviation Field[J]. Today's Manufacturing and Upgrading, 2020, (8): 48-49(in Chinese).
    [2] S. S, D. S P. A review on polymer matrix composite materials and their applications[J]. Materials Today: Proceedings, 2021, 47(P15): 5493-5498.
    [3] A. McIlhagger, E. Archer, R. McIlhagger. 3- Manufacturing processes for composite materials and components for aerospace applications[J]. Woodhead Publishing Series in Composites Science and Engineering, 2020: 59-81.
    [4] 宁蕙, 谭志勇, 张宏宇. 复合材料螺栓连接结构疲劳问题研究进展[J]. 强度与环境, 2023, 50(3): 1-9.

    NING H, TAN Z Y, ZHANG H Y. Research Progress on Fatigue Problems of Composite Material Bolted Connection Structures[J]. Strength and Environment, 2023, 50(3): 1-9(in Chinese).
    [5] ARIEF Y, MARCO A, GILLES L. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review[J]. Composites Part A, 2021, 147.
    [6] 邓立伟, 陈璐圆, 陈新文, 等. 可剥布剥离工艺性评价方法研究[J]. 失效分析与预防, 2019, 14(3): 157-160. doi: 10.3969/j.issn.1673-6214.2019.03.004

    DENG L W, CHEN L Y, CHEN X W, et al. Research on the Evaluation Method of Peelable Cloth Peeling Process[J]. Failure Analysis and Prevention, 2019, 14(3): 157-160(in Chinese). doi: 10.3969/j.issn.1673-6214.2019.03.004
    [7] TAO R, ALFANO M, LUBINEAU G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding[J]. Composites A, 2018, 109: 84-94. doi: 10.1016/j.compositesa.2018.02.041
    [8] 刘宇婷, 潘利剑, 胡秀凤, 等. 可剥布对T300/Cycom 970环氧树脂复合材料胶接性能的影响[J]. 复合材料学报, 2017, 34(5): 996-1002.

    LIU Y T, PAN L J, HU X F, et al. Influence of Peel Ply on the Adhesive Properties of T300/Cycom 970 Epoxy Resin Composite[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 996-1002(in Chinese).
    [9] 王旭, 陈璐圆, 陈萍, 等. 民用航空复合材料成型用可剥布评价与选用[J]. 航空制造技术, 2015, (19): 88-91+94.

    WANG X, CHEN L Y, CHEN P, et al. Evaluation and Selection of Peel Ply for Forming Civil Aviation Composite Materials[J]. Aviation Manufacturing Technology, 2015, (19): 88-91+94(in Chinese).
    [10] 杜婷婷, 叶云霞, 刘远方, 等. 纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响[J]. 复合材料学报, 2021, 38(5): 1435-1445.

    DU T T, YE Y X, LIU Y Y, et al. Surface wettability of CFRP composite materials controlled by nanosecond laser and its effect on bonding performance[J]. Journal of Composite Materials, 2021, 38(5): 1435-1445 (in Chinese)
    [11] 刘静, 曹意林, 李刚, 等. 激光对碳纤维及碳纤维/环氧树脂复合材料性能影响[J]. 复合材料学报, 2018, 35(11): 2979-2986.

    LIU J, CAO Y L, LI G, et al. Effects of laser on the properties of carbon fiber and carbon fiber/epoxy resin composites[J]. Journal of Composite Materials, 2018, 35(11): 2979-2986 (in Chinese)
    [12] FENG Z W, ZHAO H Y, TAN C W, et al. Nanosecond laser ablation for improving the strength of CFRTP and aluminum alloy adhesively bonded joints[J]. Composite Structures, 2021, 274.
    [13] SUN C, MIN J, LIN J, et al. Effect of Atmospheric Pressure Plasma Treatment on Adhesive Bonding of Carbon Fiber Reinforced Polymer[J]. Polymers, 2019, 11(1): 139-157. doi: 10.3390/polym11010139
    [14] 王大伟, 李晔, 刘志浩, 等. 低温等离子体表面改性对CFRP胶接性能的影响[J]. 复合材料学报, 2023, 40(4): 2026-2037.

    WANG D W, LI Y, LIU Z H, et al. Influence of Low Temperature Plasma Surface Modification on the Adhesive Properties of CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2026-2037(in Chinese).
    [15] ZALIDVAR R J, NOKES J, STECKEL G L, et al. The Effect of atmospheric plasma treatment on the chemistry, morphology and resultant bonding behavior of a pan-based carbon fiber-reinforced epoxy composite. J. Compos. Mater. 2010, 44, 137–156.
    [16] 翟全胜, 苗春卉, 崔海超, 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能[J]. 复合材料学报, 2021, 38(7): 2162-2171.

    ZHAI Q S, MIAO C H, CUI H C, et al. Adhesive Properties of Domestic T800 Carbon Fiber/High Toughness Epoxy Resin Composite Based on Surface Modification[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2162-2171(in Chinese).
    [17] DIGHTON C, REZAI A, OGIN L S, et al. Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques[J]. International Journal of Adhesion and Adhesives, 2019, 91.
    [18] 邹田春, 刘志浩, 李晔, 等. 等离子体表面处理对碳纤维增强树脂基复合材料(CFRP)胶接性能及表面特性的影响[J]. 中国表面工程, 2022, 35(1): 125-134. doi: 10.11933/j.issn.1007-9289.20210901001

    ZOU T C, LIU Z H, LI Y, et al. Influence of Plasma Surface Treatment on the Adhesive Properties and Surface Characteristics of Carbon Fiber Reinforced Resin Matrix Composite (CFRP)[J]. China Surface Engineering, 2022, 35(1): 125-134(in Chinese). doi: 10.11933/j.issn.1007-9289.20210901001
    [19] PIZZORNI M, LERTORA E, MANDOLFINO C. Low pressure plasma treatment of CFRP substrates for adhesive bonding: An investigation of joint durability under severe temperature-moisture conditioning[J]. International Journal of Adhesion and Adhesives, 2020, 99: 102592. doi: 10.1016/j.ijadhadh.2020.102592
    [20] LIN J, SUN C, MIN J, et al. Effect of atmospheric pressure plasma treatment on surface physicochemical properties of carbon fiber reinforced polymer and its interfacial bonding strength with adhesive[J]. Composites Part B: Engineering, 2020, 199: 108237. doi: 10.1016/j.compositesb.2020.108237
    [21] 陈俊林, 董柳杉, 余永波, 等. 等离子体处理对航空复合材料胶接性能的影响研究[J]. 纤维复合材料, 2022, 39(3): 48-53. doi: 10.3969/j.issn.1003-6423.2022.03.008

    CHEN J L, DONG L S, YU Y B, et al. Study on the influence of plasma treatment on the bonding performance of aviation composite materials[J]. Fiber Composite Materials, 2022, 39(3): 48-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2022.03.008
    [22] ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International, West Conshohocken, PA(2013).
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-04-10
  • 录用日期:  2024-04-13
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回