无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能

肖琪聃, 周峰, 吴珊

肖琪聃, 周峰, 吴珊. 无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能[J]. 复合材料学报, 2018, 35(10): 2832-2840. DOI: 10.13801/j.cnki.fhclxb.20180208.001
引用本文: 肖琪聃, 周峰, 吴珊. 无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能[J]. 复合材料学报, 2018, 35(10): 2832-2840. DOI: 10.13801/j.cnki.fhclxb.20180208.001
XIAO Qidan, ZHOU Feng, WU Shan. Current-carrying friction and wear characteristics of TiC/Ti3SiC2 composites under high speed by infiltration sintering[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2832-2840. DOI: 10.13801/j.cnki.fhclxb.20180208.001
Citation: XIAO Qidan, ZHOU Feng, WU Shan. Current-carrying friction and wear characteristics of TiC/Ti3SiC2 composites under high speed by infiltration sintering[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2832-2840. DOI: 10.13801/j.cnki.fhclxb.20180208.001

无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能

基金项目: 国家自然科学基金(U1504505);信阳师范学院‘南湖学者奖励计划’青年项目(Nanhu Scholars Program for Young Scholars of XYNU)
详细信息
    通讯作者:

    肖琪聃,博士,副教授,硕士生导师,研究方向为金属、陶瓷基复合材料,E-mail:xiaoqidan253@163.com

  • 中图分类号: TB331

Current-carrying friction and wear characteristics of TiC/Ti3SiC2 composites under high speed by infiltration sintering

  • 摘要: 采用无压熔渗反应烧结技术制备了TiC/Ti3SiC2复合材料,通过HST-100型载流摩擦磨损试验机,在60~90 m/s滑动速度范围内,对TiC/Ti3SiC2复合材料的高速载流摩擦磨损性能进行了研究。结果表明:当与HSLA80配副时,TiC/Ti3SiC2的摩擦磨损性能与摩擦速度和TiC含量呈现出一定的相关性。当摩擦速度小于80 m/s时,摩擦表面出现具有减磨作用的熔融状态的均匀分布氧化膜(FeTiO3和Fe2.35Ti0.65O4),呈现山脊及犁沟状形貌,磨损机制以磨粒切削磨损、氧化磨损及粘着磨损为主;当摩擦速度超过80 m/s时,摩擦表面出现不均匀分布的氧化膜,呈现孤峰状形貌,磨损机制以氧化磨损及电弧烧蚀磨损为主。相同实验条件下,摩擦系数随着TiC含量的增加而增大,磨损率随之降低。
    Abstract: TiC/Ti3SiC2 composite material was prepared by infiltration sintering technology, the investigation was conducted on a HST-100 pin-on-disc friction and wear testing machine in the speed range of 60-90 m/s. The results show that the friction and wear behavior of TiC/Ti3SiC2 is closely related with the sliding speed and TiC content against HSLA80 pairs. When the sliding speed is slower than 80 m/s, the worn surface characterized by groove-ridge, Pan furrows and their combined to pography, uniform oxidation film (FeTiO3 and Fe2.35Ti0.65O4) will be formed on the surface, and the main wear mechanisms are abrasive wear, oxidation wear and adhesive wear. However, When the sliding speed is faster than 80 m/s, the worn surface characterized by isolated peak pattern, discontinuous and non-uniform oxidation film is formed. Wear mechanism is mainiy arc oxidation. Under the same experiment conditions, the coefficient of friction increases and the wear rate decreases with the content increase of TiC content.
计量
  • 文章访问数:  933
  • HTML全文浏览量:  103
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-01
  • 修回日期:  2018-01-08
  • 刊出日期:  2018-10-14

目录

    /

    返回文章
    返回