Volume 38 Issue 5
May  2021
Turn off MathJax
Article Contents
HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004
Citation: HE Yemao, JIAO Yanan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004

Research progress on ballistic response of advanced composite for ballistic protection

doi: 10.13801/j.cnki.fhclxb.20201201.004
  • Received Date: 2020-09-24
  • Accepted Date: 2020-11-24
  • Available Online: 2020-12-02
  • Publish Date: 2021-05-01
  • The ballistic response of advanced composite for ballistic protection and its application status in engineering field are reviewed in this paper. Firstly, the bulletproof performance of high-performance fiber is outlined based on the experimental results of engineering application research. Those high-performance fibers include ultra-high molecular weight polyethylene (UHMWPE) fiber, aramid Ⅲ fiber, poly para phenylene terepthalamide (PPTA) fiber, poly-p-phenylene-2,6-benzobisoxazole (PBO), and polyimide (PI) fiber. In addition, the application status of its composite is introduced in the field of ballistic protection engineering. The ballistic performance of advanced composite is gradually improved with the breakthrough of fiber mechanical properties in recent years. Secondly, the influence factors and its working-mechanism of ballistic behavior of advanced composites are discussed. It is found that the plastic tensile deformation of advanced composites is the main ballistic mechanism to resist projectile penetration. Finally, the research outlooks of advanced composite for ballistic application are proposed.

     

  • loading
  • [1]
    BHATNAGAR A. Lightweight fiber-reinforced composites for ballistic applications[M]//BEAUMONT P W R, ZWEBEN C H. Comprehensive composite materials Ⅱ. Elsevier Ltd., 2018: 527-544.
    [2]
    CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures,2003,61(1-2):161-173. doi: 10.1016/S0263-8223(03)00029-1
    [3]
    CROUCH I G C. Body armour: New materials, new systems[J]. Defence Technology,2019,15(3):241-253. doi: 10.1016/j.dt.2019.02.002
    [4]
    AN X Y, TIAN C, SUN Q T, et al. Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures[J]. Defence Technology,2020,16(1):77-87. doi: 10.1016/j.dt.2019.04.015
    [5]
    PALTA E, GUTOWSKI M, FANG H B. A numerical study of steel and hybrid armor plates under ballistic impacts[J]. International Journal of Solids and Structures,2018,136-137:279-294. doi: 10.1016/j.ijsolstr.2017.12.021
    [6]
    MARISSEN R. Design with ultra strong polyethylene fibers[J]. Materials Sciences and Applications,2011,2(5):319-330. doi: 10.4236/msa.2011.25042
    [7]
    RUDNIK E, DOBKOWAKI Z. Thermal degradation of UHMWPE[J]. Journal of Thermal Analysis,1997,49(1):471-475. doi: 10.1007/BF01987473
    [8]
    AFSHARI M, SIKKEMA D J, LEE K, et al. High-performance fibers based on rigid and flexible polymers[J]. Polymer Reviews,2008,48(2):230-274. doi: 10.1080/15583720802020129
    [9]
    LIU Z, SONG B, WANG T T, et al. Significant improved interfacial properties of PBO fibers composites by in-situ constructing rigid dendritic polymers on fiber surface[J]. Applied Surface Science,2020,512:145719. doi: 10.1016/j.apsusc.2020.145719
    [10]
    QI G C, ZHANG B M, DU S Y. Assessment of F-Ⅲ and F-12 aramid fiber/epoxy interfacial adhesions based on fiber bundle specimens[J]. Composites Part A: Applied Science and Manufacturing,2018,112:549-557. doi: 10.1016/j.compositesa.2018.06.001
    [11]
    CHANG J, NIU H, WU D. High performance polyimide fibers[M]//BHAT G. Structure and properties of high-performance fibers. Woodhead Publishing, 2017: 301-323.
    [12]
    ZHANG T, JIN J, YANG S, et al. Preparation and properties of novel PIPD fibers[J]. Chinese Science Bulletin,2010,55(36):4203-4207. doi: 10.1007/s11434-010-3184-6
    [13]
    CUNIFF P M. Dimensionless parameters for optimization of textile based body armor systems[C]//Proceedings of the 18th International Symposium on Ballistics. Lancaster: Technomic Publishing, 1999.
    [14]
    STRAWHECKER K E, SANDOZ-ROSADO E J, STOCKDALE T A, et al. Interior morphology of high-performance polyethylene fibers revealed by modulus mapping[J]. Polymer,2016,103:224-232. doi: 10.1016/j.polymer.2016.09.062
    [15]
    BERGER L, KAUSCH H H, PLUMMER C J G. Structure and deformation mechanisms in UHMWPE-fibres[J]. Polymer,2003,44(19):5877-5884. doi: 10.1016/S0032-3861(03)00536-6
    [16]
    STANISZEWSKI J M, BOGETTI T A, WU V, et al. Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension[J]. International Journal of Solids and Structures,2020,206:354-369. doi: 10.1016/j.ijsolstr.2020.09.021
    [17]
    YEH J T, LIN S C, TU C W, et al. Investigation of the drawing mechanism of UHMWPE fibers[J]. Journal of Materials Science,2008,43(14):4892-4900. doi: 10.1007/s10853-008-2711-1
    [18]
    ZAMFIROVA G, PEREÑA J M, BENAVENTE R, et al. Mechanical properties of ultra high molecular weight polyethylene obtained with different cocatalyst systems[J]. Polymer Journal,2002,34(3):125-131. doi: 10.1295/polymj.34.125
    [19]
    LU Z Q, SI L M, DANG W B, et al. Transparent and mechanically robust poly(para-phenylene terepthalamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers[J]. Composites Part A: Applied Science and Manufacturing,2018,115:321-330. doi: 10.1016/j.compositesa.2018.10.009
    [20]
    CHATZI E G, KOENIG J L. Morphology and structure of kevlar fibers: A Review[J]. Polymer-Plastics Technology and Engineering,1987,26(3-4):229-270.
    [21]
    MCDANIEL P B, SOCKALINGAM S, DEITZEL J M, et al. The effect of fiber meso/nanostructure on the transverse compression response of ballistic fibers[J]. Composites Part A: Applied Science and Manufacturing,2017,94:133-145. doi: 10.1016/j.compositesa.2016.12.003
    [22]
    LEE J, KIM S S, KANG D, et al. Physicochemical characterization of polyimide (PI)/p-aramid: New functional and safe materials with improved heat resistance by a simple coating of polyimide on the surface of p-aramid[J]. Progress in Organic Coatings,2019,127:117-123. doi: 10.1016/j.porgcoat.2018.11.012
    [23]
    RODRÍGUEZ-MILLÁN M, ITO T, LOYA J A, et al. Development of numerical model for ballistic resistance evaluation of combat helmet and experimental validation[J]. Materials & Design,2016,110:391-403.
    [24]
    LI X G, GAO X L, KLEIVEN S. Behind helmet blunt trauma induced by ballistic impact: A computational model[J]. International Journal of Impact Engineering,2016,91:56-67. doi: 10.1016/j.ijimpeng.2015.12.010
    [25]
    PALTA E, FANG H B, WEGGEL D C. Finite element analysis of the advanced combat helmet under various ballistic impacts[J]. International Journal of Impact Engineering,2018,112:125-143. doi: 10.1016/j.ijimpeng.2017.10.010
    [26]
    YIN C Q, DONG J, TAN W J, et al. Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety[J]. Polymer,2015,75:178-186. doi: 10.1016/j.polymer.2015.08.025
    [27]
    周映, 高鸿, 张梦颖, 等. 高性能有机纤维耐热性能与结构演变研究[J]. 合成纤维工业, 2019, 42(4):6-14. doi: 10.3969/j.issn.1001-0041.2019.04.003

    ZHOU Ying, GAO Hong, ZHANG Mengying, et al. Study on heat resistance and structural evolution of high-performance organic fibers[J]. China Synthetic Fiber Industry,2019,42(4):6-14(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.04.003
    [28]
    TAMARGO-MARTÍNEZ K, MARTÍNEZ-ALONSO A, MONTES-MORÁN M A, et al. Effect of oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties of single fiber/epoxy composites studied by Raman spectroscopy[J]. Composites Science and Technology,2011,71(6):784-790. doi: 10.1016/j.compscitech.2010.10.008
    [29]
    ANSARI M M, CHAKRABARTI A. Ballistic performance of unidirectional glass fiber laminated composite plate under normal and oblique impact[J]. Procedia Engineering,2017,173:161-168. doi: 10.1016/j.proeng.2016.12.053
    [30]
    MEYER C S, HAQUE B Z, O'BRIEN D J, et al. Mesoscale ballistic damage mechanisms of a single-layer woven glass/epoxy composite[J]. International Journal of Impact Engineering,2018,113:118-131. doi: 10.1016/j.ijimpeng.2017.11.005
    [31]
    NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing,2016,84:224-235. doi: 10.1016/j.compositesa.2016.01.014
    [32]
    CAO M, ZHAO Y, GU B H, et al. Progressive failure of inter-woven carbon-Dyneema fabric reinforced hybrid composites[J]. Composite Structures,2019,211:175-186. doi: 10.1016/j.compstruct.2018.12.024
    [33]
    NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: Experimental and numerical study[J]. International Journal of Impact Engineering,2019,132:103307. doi: 10.1016/j.ijimpeng.2019.05.021
    [34]
    NGUYEN L H, RYAN S, ORIFICI A C, et al. A penetration model for semi-infinite composite targets[J]. International Journal of Impact Engineering,2020,137:103438. doi: 10.1016/j.ijimpeng.2019.103438
    [35]
    GUO Z, CHEN W, ZHENG J. A semi-empirical design parameter for determining the inelastic strike-face mass fraction of soft armor targets[J]. International Journal of Impact Engineering,2019,125:83-92. doi: 10.1016/j.ijimpeng.2018.10.007
    [36]
    ZHIKHAREV M V, SAPOZHNIKOV S B. Two-scale modeling of high-velocity fragment GFRP penetration for assessment of ballistic limit[J]. International Journal of Impact Engineering,2017,101:42-48. doi: 10.1016/j.ijimpeng.2016.08.005
    [37]
    HA-MINH C, IMAD A, BOUSSU F, et al. Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic impact[J]. International Journal of Impact Engineering,2016,88:91-101. doi: 10.1016/j.ijimpeng.2015.08.011
    [38]
    ANSARI M M, CHAKRABARTI A, IQBAL M A. An experimental and finite element investigation of the ballistic performance of laminated GFRP composite target[J]. Composites Part B: Engineering,2017,125:211-226. doi: 10.1016/j.compositesb.2017.05.079
    [39]
    GREENHALGH E S, BLOODWORTH V M, IANNUCCI L, et al. Fractographic observations on Dyneema® composites under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing,2013,44:51-62. doi: 10.1016/j.compositesa.2012.08.012
    [40]
    NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra-high molecular weight polyethylene composite[J]. International Journal of Impact Engineering,2015,75:174-183. doi: 10.1016/j.ijimpeng.2014.07.008
    [41]
    LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures,2017,179:245-257. doi: 10.1016/j.compstruct.2017.07.074
    [42]
    KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates[J]. European Journal of Mechanics A: Solids,2013,42:35-53. doi: 10.1016/j.euromechsol.2013.04.002
    [43]
    KARTHIKEYAN K, RUSSELL B P. Polyethylene ballistic laminates: Failure mechanics and interface effect[J]. Materials & Design,2014,63:115-125.
    [44]
    O'MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates[J]. International Journal of Impact Engineering,2015,86:249-264. doi: 10.1016/j.ijimpeng.2015.08.012
    [45]
    ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams[J]. International Journal of Impact Engineering,2016,93:153-165. doi: 10.1016/j.ijimpeng.2016.02.010
    [46]
    ATTWOOD J P, KHADERI S N, KARTHIKEYAN K, et al. The out-of-plane compressive response of Dyneema® composites[J]. Journal of the Mechanics and Physics of Solids,2014,70:200-226. doi: 10.1016/j.jmps.2014.05.017
    [47]
    LIU B G, WADLEY H N G, DESHPANDE V S. Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles[J]. International Journal of Solids and Structures,2019,178-179:180-198. doi: 10.1016/j.ijsolstr.2019.07.001
    [48]
    何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5):DOI: 10.13801/j.cnki.fhclxb.20200722.003.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Ballistic performance of ultra-high molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica,2021,38(5):DOI: 10.13801/j.cnki.fhclxb.20200722.003(in Chinese).
    [49]
    周庆, 何业茂, 刘婷. 对位芳香族聚酰胺纤维/环氧树脂复合材料防弹性能及其破坏机制[J]. 复合材料学报, 2019, 36(10): 2235-2246.

    ZHOU Qing, HE Yemao, LIU Ting. Bulletproof performance and bulletproof mechanism of para-aromatic polyamide fiber/epoxy resin composite material[J]. 2019, 36 (10): 2235-2246(in Chinese).
    [50]
    JIN Y X, MAI R M, WU C, et al. Comparison of ballistic impact effects between biological tissue and gelatin[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,78:292-297. doi: 10.1016/j.jmbbm.2017.11.033
    [51]
    GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatin[J]. International Journal of Impact Engineering,2020,136:103417. doi: 10.1016/j.ijimpeng.2019.103417
    [52]
    VARGAS-GONZALEZ L R, GURGANUS J C. Hybridized composite architecture for mitigation of non-penetrating ballistic trauma[J]. International Journal of Impact Engineering,2015,86:295-306. doi: 10.1016/j.ijimpeng.2015.08.014
    [53]
    National Institute of Standards and Technology. Ballistic resistance of personal body armor: NIJ standard-0101.04[S]. Washington: National Law Enforcement and Corrections Technology Center, 2004.
    [54]
    焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34(9):1960-1972.

    JIAO Yanan, HE Yemao, ZHOU Qing, et al. Influence factors on ballistic performance and failure mechanism of fiber reinforced resin matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(9):1960-1972(in Chinese).
    [55]
    WANG H W, HAZELL P J, SHANKAR K, et al. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices[J]. Polymer Testing,2017,61:17-26.
    [56]
    HSIEH A J, CHANTAWANSRI T L, HU W, et al. New insight into the influence of molecular dynamics of matrix elastomers on ballistic impact deformation in UHMWPE composites[J]. Polymer,2016,95:52-61. doi: 10.1016/j.polymer.2016.04.048
    [57]
    何业茂. 高性能纤维增强树脂基复合材料防弹装甲的研究[D]. 天津: 天津工业大学, 2017.

    HE Yemao. Study on the ballistic armor of high-performance fiber reinforced resin matrix composite[D]. Tianjin: Tiangong University, 2017(in Chinese).
    [58]
    KULKARNI S G, GAO X L, HORNER S E, et al. Ballistic helmets: Their design, materials, and performance against traumatic brain injury[J]. Composite Structures,2013,101:313-331. doi: 10.1016/j.compstruct.2013.02.014
    [59]
    KARTIKEYA K, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing,2020,82:106293. doi: 10.1016/j.polymertesting.2019.106293
    [60]
    LINUL E, ŞERBAN D A, MARSAVINA L, et al. Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions[J]. Archives of Civil and Mechanical Engineering,2017,17(3):457-466. doi: 10.1016/j.acme.2016.12.009
    [61]
    CHU T L, HA-MINH C, IMAD A. Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact[J]. Composite Structures,2017,159:267-277. doi: 10.1016/j.compstruct.2016.09.039
    [62]
    ZHANG D, SUN Y, CHEN L, et al. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate[J]. Materials & Design,2014,54:315-322.
    [63]
    ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Engineering of 3D warp interlock p-aramid fabric structure and its energy absorption capabilities against ballistic impact for body armour applications[J]. Composite Structures,2019,225:111179. doi: 10.1016/j.compstruct.2019.111179
    [64]
    YANG Y, CHEN X. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact[J]. Composite Structures,2019,224:111015. doi: 10.1016/j.compstruct.2019.111015
    [65]
    KARBALAIE M, YAZDANIRAD M, MIRHABIBI A. High performance Dyneema fiber laminate for impact resistance/macro structural composite[J]. Journal of Thermoplastic Composite Materials,2011,25:403-414.
    [66]
    LÄSSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering,2018,147:47-55. doi: 10.1016/j.compositesb.2018.04.030
    [67]
    LÄSSIG T, BAGUSAT F, MAY M, et al. Analysis of the shock response of UHMWPE composites using the inverse planar plate impact test and the shock reverberation technique[J]. International Journal of Impact Engineering,2015,86:240-248. doi: 10.1016/j.ijimpeng.2015.08.010
    [68]
    YANG Y, CHEN X. Study of energy absorption and failure modes of constituent layers in body armour panels[J]. Composites Part B: Engineering,2016,98:250-259. doi: 10.1016/j.compositesb.2016.04.071
    [69]
    YANG Y, CHEN X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures,2017,164:1-9. doi: 10.1016/j.compstruct.2016.12.057
    [70]
    CHEN X, ZHOU Y, WELLS G. Numerical and experimental investigations into ballistic performance of hybrid fabric panels[J]. Composites Part B: Engineering,2014,58:35-42. doi: 10.1016/j.compositesb.2013.10.019
    [71]
    MOUSAVI M V, KHORAMISHAD H. The effect of hybridization on high-velocity impact response of carbon fiber-reinforced polymer composites using finite element modeling, Taguchi method and artificial neural network[J]. Aerospace Science and Technology,2019,94:105393. doi: 10.1016/j.ast.2019.105393
    [72]
    OKHAWILAI M, HIZIROGLU S, RIMDUSIT S. Measurement of ballistic impact performance of fiber reinforced polybenzoxazine/polyurethane composites[J]. Measurement,2018,130:198-210. doi: 10.1016/j.measurement.2018.08.006
    [73]
    ZHOU Y, CHEN X, WELLS G. Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre[J]. Composites Part B: Engineering,2014,62:198-204. doi: 10.1016/j.compositesb.2014.02.022
    [74]
    GÜRGEN S, KUŞHAN M C. The ballistic performance of aramid-based fabrics impregnated with multi-phase shear thickening fluids[J]. Polymer Testing,2017,64:296-306. doi: 10.1016/j.polymertesting.2017.11.003
    [75]
    SILVA A O D, WEBER R P, MONTEIRO S N, et al. Effect of graphene oxide coating on the ballistic performance of aramid fabric[J]. Journal of Materials Research and Technology,2020,9(2):2267-2278. doi: 10.1016/j.jmrt.2019.12.058
    [76]
    LU Z, YUAN Z, CHEN X, et al. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact[J]. Composite Structures,2019,227:111208. doi: 10.1016/j.compstruct.2019.111208
    [77]
    ZHU W, HUANG G Y, FENG S S, et al. Conical nosed projectile perforation of polyethylene reinforced cross-ply laminates: Effect of fiber lateral displacement[J]. International Journal of Impact Engineering,2018,118:39-49. doi: 10.1016/j.ijimpeng.2018.04.005
    [78]
    REDDY P R S, REDDY T S, MADHU V, et al. Behavior of E-glass composite laminates under ballistic impact[J]. Materials & Design,2015,84:79-86.
    [79]
    CHEN L, ZHENG K, FANG Q. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates[J]. Polymer Testing,2017,63:54-64. doi: 10.1016/j.polymertesting.2017.07.031
    [80]
    LI X, ZHANG X, GUO Y, et al. Influence of fiber type on the impact response of titanium-based fiber-metal laminates[J]. International Journal of Impact Engineering,2018,114:32-42. doi: 10.1016/j.ijimpeng.2017.12.011
    [81]
    KĘDZIERSKI P, POPŁAWSKI A, GIELETA R, et al. Experimental and numerical investigation of fabric impact behavior[J]. Composites Part B: Engineering,2015,69:452-459. doi: 10.1016/j.compositesb.2014.10.028
    [82]
    HAN R G, QU Y J, YAN W M, et al. Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets[J]. Defence Technology,2020,16(4):900-909. doi: 10.1016/j.dt.2019.11.010
    [83]
    ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures,2015,133:191-201. doi: 10.1016/j.compstruct.2015.06.081
    [84]
    KARTHIKEYAN K, KAZEMAHVAZI S, RUSSELL B P. Optimal fibre architecture of soft-matrix ballistic laminates[J]. International Journal of Impact Engineering,2016,88:227-237. doi: 10.1016/j.ijimpeng.2015.10.012
    [85]
    ZULKIFLI F, STOLK J, HEISSERER U, et al. Strategic positioning of carbon fiber layers in an UHMWPE ballistic hybrid composite panel[J]. International Journal of Impact Engineering,2019,129:119-127. doi: 10.1016/j.ijimpeng.2019.02.005
    [86]
    KĘDZIERSKI P, GIELETA R, MORKA A, et al. Experimental study of hybrid soft ballistic structures[J]. Composite Structures,2016,153:204-211. doi: 10.1016/j.compstruct.2016.06.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (2084) PDF downloads(283) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return