Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN Bingwei, KAN Yu’na, ZHAI Shengcheng, et al. Research progress on the hierarchical structure and mechanical behaviors of phloem fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 38-50. doi: 10.13801/j.cnki.fhclxb.20220512.004
Citation: CHEN Bingwei, KAN Yu’na, ZHAI Shengcheng, et al. Research progress on the hierarchical structure and mechanical behaviors of phloem fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 38-50. doi: 10.13801/j.cnki.fhclxb.20220512.004

Research progress on the hierarchical structure and mechanical behaviors of phloem fibers

doi: 10.13801/j.cnki.fhclxb.20220512.004
Funds:  National Natural Science Foundation of China (31400496); Natural Science Foundation of Jiangsu Province (BK20140981); Project Funded by the National First-class Disciplines (PNFD)
  • Received Date: 2022-03-22
  • Accepted Date: 2022-05-04
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-05-12
  • Publish Date: 2023-01-15
  • Phloem fiber (or Bast fiber), a kind of non-woody plant fiber, is widely used to reinforce composites due to its good mechanical properties and eco-friendliness. In the cell wall of phloem fiber, abundant cellulose microfibrils with the helical structure are embedded in an amorphous matrix composed of hemicellulose, pectin, and lignin. The variation of the cellulose microfibril angle forms a highly ordered hierarchical structure of the cell wall. The assembly structure and compositions at different scales are of great significance for mechanisms and principles of the excellent mechanical performance of phloem fiber. This work summarized the structural characteristics of phloem fibers represented by hemp and flax at the tissue level, cell wall level, ultrastructural level, and molecular level. The emphasis was focused on the underlying interactions at different levels which generated the special mechanical behavior of the phloem fibers during the axial stretching process. Finally, the existing problems were pointed out, and the development trends of future research were prospected. The extracted concepts may provide new ideas for improving the utilization of phloem fiber and serve as inspiration for biomimetic applications.

     

  • loading
  • [1]
    RICHELY E, BOURMAUD A, PLACET V, et al. A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects[J]. Progress in Materials Science,2022,124:100851. doi: 10.1016/j.pmatsci.2021.100851
    [2]
    GOUDENHOOFT C A, BOURMAUD A, BALEY C. Flax (Linum usitatissimum L. ) fibers for composite reinforcement: Exploring the link between plant growth, cell walls development, and fiber properties[J]. Frontiers in Plant Science,2019,10:411. doi: 10.3389/fpls.2019.00411
    [3]
    ANGYALOSSY V, PACE M R, EVERT R F, et al. IAWA list of microscopic bark features[J]. IAWA Journal,2016,37(4):517-615. doi: 10.1163/22941932-20160151
    [4]
    EVERT R F. Phloem: Secundary phloem and its various structures. Esaus pflanzenanatomie: Meristeme, zellen und gewebe der pflanzen ihre struktur, funktion und entwicklung[M]. New York: De Gruyter, 2009: 373-390.
    [5]
    EVERT R F. Phloem: Cell types and aspects of the development. Esaus pflanzenanatomie: Meristeme, zellen und gewebe der pflanzen ihre struktur, funktion und entwicklung[M]. New York: De Gruyter, 2009: 327-372.
    [6]
    BURGERT I. Exploring the micromechanical design of plant cell walls[J]. American Journal of Botany,2006,93(10):1391-1401. doi: 10.3732/ajb.93.10.1391
    [7]
    BURGERT I, FRÜHMANN K, KECKES J, et al. Structure-function relationships of four compression wood types: Micromechanical properties at the tissue and fibre level[J]. Trees,2004,18(4):480-485.
    [8]
    WEGST U G K, ASHBY M. The mechanical efficiency of natural materials[J]. Philosophical Magazine,2004,84(21):2167-2186. doi: 10.1080/14786430410001680935
    [9]
    AHMED M M, DHAKAL H N, ZHANG Z Y, et al. Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review[J]. Composite Structures,2021,259:113496. doi: 10.1016/j.compstruct.2020.113496
    [10]
    GUAN Q F, YANG K P, HAN Z M, et al. Sustainable multiscale high-haze transparent cellulose fiber film via a biomimetic approach[J]. ACS Materials Letters,2021,4(1):87-92.
    [11]
    贾云龙, FIEDLER Bodo. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2):616-624.

    JIA Yunlong, FIEDLER Bodo. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica,2022,39(2):616-624(in Chinese).
    [12]
    CHERNOVA T E, MIKSHINA P V, SALNIKOV V V, et al. Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp (Cannabis sativa L. )[J]. Industrial Crops and Products,2018,117:97-109. doi: 10.1016/j.indcrop.2018.02.082
    [13]
    JAVIS M C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2018, 376(2112): 20170045.
    [14]
    AMIRI A, ULVEN C A, HUO S. Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition[J]. Polymers,2015,7(10):1965-1978. doi: 10.3390/polym7101493
    [15]
    HÄNNINEN T, MICHUD A, HUGHES M. Kink bands in bast fibres and their effects on mechanical properties[J]. Plastics, Rubber and Composites,2013,40(6-7):307-310.
    [16]
    RASK M, MADSEN B, SǾRENSEN B F, et al. In situ observations of microscale damage evolution in unidirectional natural fibre composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(10):1639-1649. doi: 10.1016/j.compositesa.2012.02.007
    [17]
    NYHOLM K, ANDER P, BARDAGE S, et al. Dislocations in pulp fibres-their origin, characteristics and importance—A review[J]. Nordic Pulp and Paper Research Journal,2001,16(4):376-384. doi: 10.3183/npprj-2001-16-04-p376-384
    [18]
    MELELLI A, DURAND S, ARNOULD O, et al. Extensive investigation of the ultrastructure of kink-bands in flax fibres[J]. Industrial Crops and Products,2021,164:113368. doi: 10.1016/j.indcrop.2021.113368
    [19]
    THYGESEN L G, EDER M, BURGERT I. Dislocations in single hemp fibres-investigations into the relationship of structural distortions and tensile properties at the cell wall level[J]. Journal of Materials Science,2007,42(2):558-564.
    [20]
    ASLAN M, CHINGA-CARRASCO G, SǾRENSEN B F, et al. Strength variability of single flax fibres[J]. Journal of Materials Science,2011,46(19):6344-6354. doi: 10.1007/s10853-011-5581-x
    [21]
    PLACET V, TRIVAUDEY F, CISSE O, et al. Diameter dependence of the apparent tensile modulus of hemp fibres: A morphological, structural or ultrastructural effect?[J]. Composites Part A: Applied Science and Manufacturing,2012,43(2):275-287. doi: 10.1016/j.compositesa.2011.10.019
    [22]
    DUVAL A, BOURMAUD A, AUGIER L, et al. Influence of the sampling area of the stem on the mechanical properties of hemp fibers[J]. Materials Letters,2011,65(4):797-800. doi: 10.1016/j.matlet.2010.11.053
    [23]
    CHARLET K, JERNOTA J P, EVE S, et al. Multi-scale morphological characterisation of flax: From the stem to the fibrils[J]. Carbohydrate Polymers,2010,82(1):54-61. doi: 10.1016/j.carbpol.2010.04.022
    [24]
    FAN M. Characterization and performance of elementary hemp fibres: Factors influencing tensile strength[J]. Bioresources,2010,5(4):2307-2322. doi: 10.15376/biores.5.4.2307-2322
    [25]
    KIYOTO S, YOSHINAGA A, FERNANDEZ-TENDERO E, et al. Distribution of lignin, hemicellulose, and arabinogalactan protein in hemp phloem fibers[J]. Microscopy and Microanalysis,2018,24(4):442-452. doi: 10.1017/S1431927618012448
    [26]
    BEHR M, FALERI C, HAUSMAN J F, et al. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl[J]. Planta,2019,250(5):1539-1556. doi: 10.1007/s00425-019-03245-9
    [27]
    ROACH M J, MOKSHINA N Y, BADHAN A, et al. Development of cellulosic secondary walls in flax fibers requires beta-galactosidase[J]. Plant Physiology,2011,156(3):1351-1363. doi: 10.1104/pp.111.172676
    [28]
    IBRAGIMOVA N, MOKSHINA N, AGEEVA M, et al. Rearrangement of the cellulose-enriched cell wall in flax phloem fibers over the course of the gravitropic reaction[J]. Journal of Molecular Sciences,2020,21(15):5322-5344. doi: 10.3390/ijms21155322
    [29]
    ABDUL KHALIL H P S, YUSRA A F I, BHAT A H, et al. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber[J]. Industrial Crops and Products,2010,31(1):113-121. doi: 10.1016/j.indcrop.2009.09.008
    [30]
    QI H H, CHEN K W, MAO Z D, et al. Investigation of the structure of ramie fibers by enzymatic peeling[J]. Cellulose,2019,26(5):2955-2968. doi: 10.1007/s10570-019-02309-z
    [31]
    GORSHKOVA T A, GURJANOV O P, MIKSHINA P V, et al. Specific type of secondary cell wall formed by plant fibers[J]. Russian Journal of Plant Physiology,2010,57(3):328-341. doi: 10.1134/S1021443710030040
    [32]
    GOUDENHOOFT C, SINISCALCO D, ARNOULD O, et al. Investigation of the mechanical properties of flax cell walls during plant development: The relation between performance and cell wall structure[J]. Fibers,2018,6(1):6. doi: 10.3390/fib6010006
    [33]
    BLAKE A W, MARCUS S E, COPELAND J E, et al. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.[J]. Planta,2008,228(1):1-13. doi: 10.1007/s00425-008-0713-5
    [34]
    JIN K, LIU X, WANG K, et al. Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus × euramericana[J]. Planta,2018,248(4):849-858. doi: 10.1007/s00425-018-2931-9
    [35]
    NAKAGAWA K, YOSHINAGA A, TAKABE K. Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods[J]. Annals of Botany,2012,110(4):897-904. doi: 10.1093/aob/mcs144
    [36]
    NAKAGAWA K, YOSHINAGA A, TAKABE K. Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae)[J]. Tree Physiology,2014,34(9):1018-1029. doi: 10.1093/treephys/tpu061
    [37]
    CHEN M, DAI C, LIU R, et al. Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers[J]. Industrial Crops and Products,2020,155:112787. doi: 10.1016/j.indcrop.2020.112787
    [38]
    GHISLAIN B, CLAIR B. Diversity in the organisation and lignification of tension wood fibre walls—A review[J]. IAWA Journal,2017,38(2):245-265. doi: 10.1163/22941932-20170170
    [39]
    MELELLI A, ARNOULD O, BEAUGRAND J, et al. The middle lamella of plant fibers used as composite reinforcement: Investigation by atomic force microscopy[J]. Molecules,2020,25(3):632. doi: 10.3390/molecules25030632
    [40]
    BALEY C, PERROT Y, BUSNEL F, et al. Transverse tensile behaviour of unidirectional plies reinforced with flax fibres[J]. Materials Letters,2006,60(24):2984-2987. doi: 10.1016/j.matlet.2006.02.028
    [41]
    ZAMIL M S, GEITMANN A. The middle lamella-more than a glue[J]. Physical Biology,2017,14(1):015004. doi: 10.1088/1478-3975/aa5ba5
    [42]
    AIZENBERG J, WEAVER J C, THANAWALA M S, et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale[J]. Science,2005,309(5732):275-278. doi: 10.1126/science.1112255
    [43]
    MIKSHINA P, CHERNOVA T, CHEMIKOSOVA S, et al. Cellulosic fibers: Role of matrix polysaccharides in structure and function[M]. London: Intech Open, 2013.
    [44]
    FRATZL P, ELBAUM R, BURGERT I. Cellulose fibrils direct plant organ movements[J]. Faraday Discuss,2008,139:275-282. doi: 10.1039/b716663j
    [45]
    BOURMAUD A, MORVAN C, BOUALI A, et al. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers[J]. Industrial Crops and Products,2013,44:343-351. doi: 10.1016/j.indcrop.2012.11.031
    [46]
    RONGPIPI S, YE D, GOMEZ E, et al. Progress and opportunities in the characterization of cellulose-An important regulator of cell wall growth and mechanics[J]. Frontiers in Plant Science,2019,9:1894. doi: 10.3389/fpls.2018.01894
    [47]
    ZHANG T, ZHENG Y Z, COSGROVE D J. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy[J]. Plant Journal,2016,85(2):179-192. doi: 10.1111/tpj.13102
    [48]
    SAXE F, EDER M, BENECKE G, et al. Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering[J]. Plant Methods,2014,10:25. doi: 10.1186/1746-4811-10-25
    [49]
    MÜLLER M, CZIHAK C, VOGL G, et al. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering[J]. Macromolecules,1998,31(12):3953-3957. doi: 10.1021/ma980004c
    [50]
    WANG C, WANG N, LIU S, et al. Investigation of microfibril angle of flax fibers using X-ray diffraction and scanning electron microscopy[J]. Journal of Natural Fibers,2018,17(7):1001-1010.
    [51]
    CHEN B, ZHAI S, KAN Y, et al. New insights into Chinese traditional handmade paper: Influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii[J]. Cellulose,2021,28(15):9943-9957. doi: 10.1007/s10570-021-04150-9
    [52]
    MELELLI A, JAMME F, LEGLAND D, et al. Microfibril angle of elementary flax fibres investigated with polarised second harmonic generation microscopy[J]. Industrial Crops and Products,2020,156:112847. doi: 10.1016/j.indcrop.2020.112847
    [53]
    BALEY C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase[J]. Composites Part A: Applied Science and Manufacturing,2002,33(7):939-948. doi: 10.1016/S1359-835X(02)00040-4
    [54]
    孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):50-58.

    SUN Haiyan, SU Minglei, LV Jianxiong, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A & F University (Natural Science Edition),2019,47(5):50-58(in Chinese).
    [55]
    DONALDSON L. Microfibril angle: Measurement, variation and relationships—A review[J]. IAWA Journal,2008,29(4):345-386. doi: 10.1163/22941932-90000192
    [56]
    HIGAKI A, YOSHINAGA A, TAKABE K. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods[J]. Tree Physiology,2017,37(12):1767-1775. doi: 10.1093/treephys/tpx144
    [57]
    ZORZETTO L, RUFFONI D. Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance[J]. Advanced Functional Materials,2019,29(1):1805888. doi: 10.1002/adfm.201805888
    [58]
    SALMÉN L, BURGERT I. Cell wall features with regard to mechanical performance. A review[J]. Holzforschung,2009,63(2):121-129.
    [59]
    STURCOVA A, HIS I, APPERLEY D C, et al. Structural details of crystalline cellulose from higher plants[J]. Biomacromolecules,2004,5(4):1333-1339. doi: 10.1021/bm034517p
    [60]
    WOHLERT M, BENSELFELT T, WÅGBERG L, et al. Cellulose and the role of hydrogen bonds: Not in charge of everything[J]. Cellulose,2021,29(1):1-23.
    [61]
    DJAHEDI C, BERGLUND L A, WOHLERT J. Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds[J]. Carbohydrate Polymers,2015,130:175-182. doi: 10.1016/j.carbpol.2015.04.073
    [62]
    HINTERSTOISSER B, AKERHOLM M, SALMÉN L. Effect of fiber orientation in dynamic FTIR study on nativecellulose[J]. Carbohydrate Research,2001,334:27-37. doi: 10.1016/S0008-6215(01)00167-7
    [63]
    GIERLINGER N, SCHWANNINGER M, REINECKE A, et al. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy[J]. Macromolecules,2006,7(7):2077-2081. doi: 10.1021/bm060236g
    [64]
    GIERLINGER N, LUSS S, KONIG C, et al. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging[J]. Journal of Experimental Botany,2010,61(2):587-595. doi: 10.1093/jxb/erp325
    [65]
    ALTANER C M, THOMAS L H, FERNANDES A N, et al. How cellulose stretches: Synergism between covalent and hydrogen bonding[J]. Biomacromolecules,2014,15(3):791-798. doi: 10.1021/bm401616n
    [66]
    MÜLLER M M, BURGHAMMER M, SUGIYAMA J. Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction[J]. Holzforschung, 2006, 60(5): 474-479.
    [67]
    VIËTOR R J, NEWMAN R H, HA M A, et al. Conformational features of crystal-surface cellulose from higher plants[J]. The Plant Journal,2002,30(6):721-731. doi: 10.1046/j.1365-313X.2002.01327.x
    [68]
    BONATTI P M, FERRARI C, FOCHER B, et al. Histochemical and supramolecular studies in determining quality of hemp fibres for textile applications[J]. Euphytica,2004,140:55-64. doi: 10.1007/s10681-004-4755-x
    [69]
    WU X, MOON R J, MARTINI A. Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation[J]. Cellulose,2014,21(4):2233-2245. doi: 10.1007/s10570-014-0325-0
    [70]
    GIRAULT R, BERT F, RIHOUEY C, et al. Galactans and cellulose in flax fibres putative contributions to the tensile strength[J]. International Journal of Biological Macromolecules,1997,21(1-2):179-188. doi: 10.1016/S0141-8130(97)00059-7
    [71]
    DUCHEMIN B, THUAULT A, VICENTE A, et al. Ultrastructure of cellulose crystallites in flax textile fibres[J]. Cellulose,2012,19(6):1837-1854. doi: 10.1007/s10570-012-9786-1
    [72]
    MOKSHINA N N, IBRAGIMOVA V V, AMENITSKII S I, et al. Galactosidase of plant fibers with gelatinous cell wall: Identification and localization[J]. Russian Journal of Plant Physiology,2012,59(2):246-254. doi: 10.1134/S1021443712020082
    [73]
    GORSHKOVA T, MORVAN C. Secondary cell-wall assembly in flax phloem fibres: Role of galactans[J]. Planta,2006,223(2):149-158. doi: 10.1007/s00425-005-0118-7
    [74]
    BOWLING A J, VAUGHN K C. Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose[J]. American Journal of Botany,2008,95(6):655-663. doi: 10.3732/ajb.2007368
    [75]
    COSGROVE D J, JARVIS M C. Comparative structure and biomechanics of plant primary and secondary cell walls[J]. Frontiers in Plant Science,2012,3:204. doi: 10.3389/fpls.2012.00204
    [76]
    MARROT L, LEFEURE A, PONTOIRE B, et al. Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17)[J]. Industrial Crops and Products,2013,51:317-327. doi: 10.1016/j.indcrop.2013.09.026
    [77]
    许凤, 张逊, 周霞, 等. 农林生物质预处理过程中细胞壁主要组分溶解机理研究进展[J]. 林业工程学报, 2016, 1(4):1-9.

    XU Feng, ZHANG Xun, ZHOU Xia, et al. An investigation of dissolution mechanism of major components in cell walls of agricultural and forest biomass[J]. Journal of Forestry Engineering,2016,1(4):1-9(in Chinese).
    [78]
    DONALDSON L A. Lignification and lignin topochemistry—An ultrastructural view[J]. Phytochemistry,2001,57(6):859-873. doi: 10.1016/S0031-9422(01)00049-8
    [79]
    ÅKERHOLM M, SALMÉN L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy[J]. Holzforschung,2003,57:459-465. doi: 10.1515/HF.2003.069
    [80]
    PLACET V O, CISSÉ O, LAMINE BOUBAKAR M. Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations[J]. Composites Part A: Applied Science and Manufacturing,2014,56:319-327. doi: 10.1016/j.compositesa.2012.11.019
    [81]
    KECKES J, BURGERT I, FRÜHMANN K, et al. Cell-wall recovery after irreversible deformation of wood[J]. Nature Materials,2003,2(12):810-813. doi: 10.1038/nmat1019
    [82]
    BARTHELAT F, YIN Z, BUEHLER M J. Structure and mechanics of interfaces in biological materials[J]. Nature Reviews Materials,2016,1(4):16007. doi: 10.1038/natrevmats.2016.7
    [83]
    ASTLEY O M, DONALD A M. The tensile deformation of flax fibres as studied by X-ray scattering[J]. Journal of Materials Science,2003,38:165-171. doi: 10.1023/A:1021186421194
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (983) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return