Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LIU Xingyao, GUO Rongxin, YANG Yang, et al. Experimental analysis and theoretical prediction to piezoresistance sensing characteristics of multiwalled carbon nanotubes/natural rubber composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 232-243. doi: 10.13801/j.cnki.fhclxb.20220120.007
Citation: LIU Xingyao, GUO Rongxin, YANG Yang, et al. Experimental analysis and theoretical prediction to piezoresistance sensing characteristics of multiwalled carbon nanotubes/natural rubber composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 232-243. doi: 10.13801/j.cnki.fhclxb.20220120.007

Experimental analysis and theoretical prediction to piezoresistance sensing characteristics of multiwalled carbon nanotubes/natural rubber composite

doi: 10.13801/j.cnki.fhclxb.20220120.007
Funds:  National Natural Science Foundation of China (11962009)
  • Received Date: 2021-12-08
  • Accepted Date: 2022-01-12
  • Rev Recd Date: 2022-01-09
  • Available Online: 2022-01-20
  • Publish Date: 2023-01-15
  • A multiwalled carbon nanotubes (MWCNT)/natural rubber (NR) composite was prepared by two-roll method to achieve effective monitoring for the working performance of isolation bearings. The resistance-strain response behaviors of MWCNT/NR composites under constant strain and interval loading were studied. The results show that the stability, repeatability, monotonicity, symmetry and ‘shoulder peak’ effect of the resistance-strain response are depended on the constant strain loading. The variation amplitude of resistance tends to be stable with the increase of interval time, and the change of the amplitude can effectively be predicted via the theoretical model established. The piezoresistance behaviors for MWCNT/NR composite under different delamination forms show distinct characteristic, and the response mechanism is explained by Digimat and Workbench. A mathematical model that can completely characterize and predict the dynamic resistance-strain response was established and verified based on viscoelasticity of NR and conductivity network of MWCNT. The analytical results obtained by mathematical model are in good agreement with the experimental results, which lay a theoretical foundation for the industrial application of MWCNT/NR composites.

     

  • loading
  • [1]
    MARKOU A A, OLIVETO G, ATHANASIOU A. Response simulation of hybrid base isolation systems under earthquake excitation[J]. Soil Dynamics and Earthquake Engineering,2016,84:120-133. doi: 10.1016/j.soildyn.2016.02.003
    [2]
    HU K, ZHOU Y, JIANG L, et al. A mechanical tension-resistant device for lead rubber bearings[J]. Engineering Structures,2017,152:238-250. doi: 10.1016/j.engstruct.2017.09.006
    [3]
    KANG D, PIKHITSA P V, CHOI Y W, et al. Ultra-sensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature,2014,516(7530):222-226. doi: 10.1038/nature14002
    [4]
    LI X, CUI Q, LIU Y, et al. An effective scheduling scheme for CoMP in heterogeneous scenario[C]//2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC). Sydney: IEEE, 2012: 870–874.
    [5]
    O'DRISCOLL D P, MCMAHON S, GARCIA J, et al. Printable G-putty for frequency- and rate-independent, high-performance strain sensors[J]. Small,2021,17(23):2006542. doi: 10.1002/smll.202006542
    [6]
    TANG X, YANG W, YIN S, et al. Controllable graphene wrinkle for a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2021,13(17):20448-20458.
    [7]
    WANG J, LIU Y, WANG S, et al. Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,610:125692. doi: 10.1016/j.colsurfa.2020.125692
    [8]
    XU K, WANG Y, ZHANG B, et al. Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity[J]. Composites Communications,2021,24:100677. doi: 10.1016/j.coco.2021.100677
    [9]
    YANG G, TIAN M Z, HUANG P, et al. Flexible pressure sensor with a tunable pressure-detecting range for various human motions[J]. Carbon,2021,173:736-743. doi: 10.1016/j.carbon.2020.11.066
    [10]
    PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano,2014,8(5):4689-4697. doi: 10.1021/nn500441k
    [11]
    WANG Y, WANG L, YANG T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials,2014,24(29):4666-4670. doi: 10.1002/adfm.201400379
    [12]
    ZHAN Y, MENG Y, LI Y. Electric heating behavior of flexible graphene/natural rubber conductor with self-healing conductive network[J]. Materials Letters,2017,192:115-118. doi: 10.1016/j.matlet.2016.12.045
    [13]
    THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology,2001,61:1899-1912. doi: 10.1016/S0266-3538(01)00094-X
    [14]
    LIU X, GUO R, LIN Z, et al. Resistance-strain sensitive rubber composites filled by multi-walled carbon nanotubes for structural deformation monitoring[J]. Nanomaterials and Nanotechnology,2021,11:1-13. doi: 10.1177/18479804211011384
    [15]
    LIU H, DONG M, HUANG W, et al. Lightweight conductive graphene/thermoplastic polyure-thane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C,2017,5(1):73-83. doi: 10.1039/C6TC03713E
    [16]
    CHO H, LEE H, LEE S, et al. Reduced graphene oxide-based wearable and bio-electrolyte triggered pressure sensor with tunable sensitivity[J]. Ceramics International,2021,47(12):17702-17710. doi: 10.1016/j.ceramint.2021.03.090
    [17]
    KIRKPATRICK S. Percolation and conduction[J]. Review of Modern Physics,1973,45(4):574-588. doi: 10.1103/RevModPhys.45.574
    [18]
    EZQUERRA T A, KULESCZA M, BALTÁ-CALLEJA F J. Electrical transport in polyethylene-graphite composite materials[J]. Synthetic Metals,1991,41(3):915-920. doi: 10.1016/0379-6779(91)91526-G
    [19]
    YANG X, SUN L, ZHANG C, et al. Modulating the sensing behaviors of poly(styrene-ethylene-butylene- styrene)/carbon nanotubes with low-dimensional fillers for large deformation sensors[J]. Composites Part B: Engineering,2019,160:605-614. doi: 10.1016/j.compositesb.2018.12.119
    [20]
    SELVAN N T, ESHWARAN S B, DAS A, et al. Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications[J]. Sensors and Actuators A: Physical,2016,239:102-113. doi: 10.1016/j.sna.2016.01.004
    [21]
    YANG H, YAO X, ZHENG Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology,2018,167:371-378. doi: 10.1016/j.compscitech.2018.08.022
    [22]
    LIU X, GUO R, LI R, et al. Effect of the processing on the resistance-strain response of multiwalled carbon nanotube/natural rubber composites for use in large deformation sensors[J]. Nanomaterials,2021,11(7):1845. doi: 10.3390/nano11071845
    [23]
    WU G, ASAI S, ZHANG C, et al. A delay of percolation time in carbon-black-filled conductive polymer composites[J]. Journal of Applied Physics,2000,88(3):1480-1487. doi: 10.1063/1.373843
    [24]
    CAO Q, SONG Y, TAN Y, et al. Thermal-induced percolation in high-density polyethylene/carbon black composites[J]. Polymer,2009,50(26):6350-6356. doi: 10.1016/j.polymer.2009.10.059
    [25]
    ALLEN P E M, PATRICK C R. Polymer chemistry: Kinetics and mechanisms of polymerization reactions. Applications of physicochemical principles[J]. Science,1975,187(4181):1071-1072. doi: 10.1126/science.187.4181.1071.b
    [26]
    GRAESSLEY W W. The entanglement concept in polymer rheology[M]. Berlin Heidelberg: Springer, 1974.
    [27]
    BOLAND C S, KHAN U, RYAN G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J]. Science,2016,354(6317):1257-1260. doi: 10.1126/science.aag2879
    [28]
    ZHANG X, PAN Y, ZHENG Q, et al. Time dependence of piezoresistance for the conductor-filled polymer composites[J]. Journal of Polymer Science Part B: Polymer Physics,2015,38(21):2739-2749.
    [29]
    SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics,1963,34(6):1793-1803. doi: 10.1063/1.1702682
    [30]
    SHENG P, SICHEL E K, GITTLEMAN J I. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites[J]. Physical Review Letters,1978,40(18):1197-1200. doi: 10.1103/PhysRevLett.40.1197
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (764) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return